Home Nephro Research A negative feedback loop between JNK-associated leucine zipper protein and TGF-β1 regulates kidney fibrosis

A negative feedback loop between JNK-associated leucine zipper protein and TGF-β1 regulates kidney fibrosis

Credits to the Source Link Obum
A negative feedback loop between JNK-associated leucine zipper protein and TGF-β1 regulates kidney fibrosis
  • 1.

    Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol.-Ren. Physiol. 298, F1078–F1094 (2010).

    CAS 

    Google Scholar
     

  • 2.

    Venkatachalam, M. A. et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765–1776 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Meng, X., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Sureshbabu, A., Muhsin, S. A. & Choi, M. E. TGF-β signaling in the kidney: profibrotic and protective effects. Am. J. Physiol.-Ren. Physiol. 310, F596–F606 (2016).

    CAS 

    Google Scholar
     

  • 5.

    Chen, J. et al. Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats. Am. J. Physiol.-Ren. Physiol. 304, F676–F685 (2013).

    CAS 

    Google Scholar
     

  • 6.

    Chen, S. et al. Reversibility of established diabetic glomerulopathy by anti-TGF-beta antibodies in db/db mice. Biochem. Biophys. Res. Commun. 300, 16–22 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    RamachandraRao, S. P. et al. Pirfenidone Is renoprotective in diabetic kidney disease. J. Am. Soc. Nephrol. 20, 1765–1775 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Sharma, K. et al. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 45, 522–530 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Ziyadeh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA 97, 8015–8020 (2000).

    CAS 

    Google Scholar
     

  • 10.

    Huang, X. R. et al. Mice overexpressing latent TGF-β1 are protected against renal fibrosis in obstructive kidney disease. Am. J. Physiol.-Ren. Physiol. 295, F118–F127. (2008).

    CAS 

    Google Scholar
     

  • 11.

    Huang, X. R. et al. Latent TGF-β1 protects against crescentic glomerulonephritis. J. Am. Soc. Nephrol. 19, 233–242 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Neelisetty, S. et al. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells. Kidney Int. 88, 503–514 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Li, R. X., Yiu, W. H. & Tang, S. C. Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol. 6, 114 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Mencke, R., Olauson, H. & Hillebrands, J. L. Effects of Klotho on fibrosis and cancer: a renal focus on mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 121, 85–100 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Nastase, M. V., Iozzo, R. V. & Schaefer, L. Key roles for the small leucine-rich proteoglycans in renal and pulmonary pathophysiology. Biochim. Biophys. Acta 1840, 2460–70 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Chiba, T. et al. Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J. Am. Soc. Nephrol. 27, 495–508 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Nastase, M.V. et al. Targeting renal fibrosis: mechanisms and drug delivery systems. Adv Drug Deliv. Rev. 129, 295–307 (2017).

  • 18.

    Zeke, A. et al. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol. 19, 364–374 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Wang, H. et al. A novel role of the scaffolding protein JLP in tuning CD40-induced activation of dendritic cells. Immunobiology 218, 835–843 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Wang, H. et al. Scaffold protein JLP Is critical for CD40 signaling in B lymphocytes. J. Biol. Chem. 290, 5256–5266 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Ikonomov, O. C. et al. Kinesin adapter JLP links PIKfyve to microtubule-based endosome-to-trans-golgi network traffic of Furin. J. Biol. Chem. 284, 3750–3761 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Verhey, K. J. & Hammond, J. W. Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 10, 765–777 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Roberts, A. J. et al. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713–726 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Fu, M. & Holzbaur, E. L. F. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24, 564–574 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Mackeh, R. et al. Autophagy and microtubules-new story, old players. J. Cell Sci. 126, 1071–80 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Lee, C. M. et al. JLP: a scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors. Proc. Natl Acad. Sci. USA 99, 14189–14194 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Kashef, K. et al. Endodermal differentiation of murine embryonic carcinoma cells by retinoic acid requires JLP, a JNK-scaffolding protein. J. Cell. Biochem. 98, 715–722 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Dhanasekaran, D. N. et al. Scaffold proteins of MAP-kinase modules. Oncogene 26, 3185–3202 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Ramkumar, P. et al. JNK-associated leucine zipper protein functions as a docking platform for polo-like kinase 1 and regulation of the associating transcription factor forkhead box protein K1. J. Biol. Chem. 290, 29617–29628 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Sato, T. et al. JSAP1/JIP3 and JLP regulate kinesin-1-dependent axonal transport to prevent neuronal degeneration. Cell Death Differ. 22, 1260–74 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Yan, Q. et al. Scaffold protein JLP mediates TCR-initiated CD4 + T cell activation and CD154 expression. Mol. Immunol. 87, 258–266 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Ito, M. et al. Isoforms of JSAP1 scaffold protein generated through alternative splicing. Gene 255, 229–34 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Iwanaga, A. et al. Ablation of the scaffold protein JLP causes reduced fertility in male mice. Transgenic Res. 17, 1045–1058 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Kashef, K. et al. JNK-Interacting leucine zipper protein is a novel scaffolding protein in the Gα13 signaling pathway†. Biochemistry 44, 14090–14096 (2005).

    CAS 

    Google Scholar
     

  • 35.

    Gantulga, D. et al. The scaffold protein c-Jun NH2-terminal kinase-associated leucine zipper protein regulates cell migration through interaction with the G protein G 13. J. Biochem. 144, 693–700 (2008).

    CAS 

    Google Scholar
     

  • 36.

    Garg, M. et al. Small interfering RNA-mediated down-regulation ofSPAG9 inhibits cervical tumor growth. Cancer 115, 5688–5699 (2009).

    CAS 

    Google Scholar
     

  • 37.

    Yi, F. et al. SPAG9 is overexpressed in human astrocytoma and promotes cell proliferation and invasion. Tumor Biol. 34, 2849–2855 (2013).

    CAS 

    Google Scholar
     

  • 38.

    Sinha, A. et al. Down regulation of SPAG9 reduces growth and invasive potential of triple-negative breast cancer cells: possible implications in targeted therapy. J. Exp. Clin. Cancer Res. 32, 69 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Li, H. et al. SPAG9 is overexpressed in human prostate cancer and promotes cancer cell proliferation. Tumor Biol. 35, 6949–6954 (2014).

    CAS 

    Google Scholar
     

  • 40.

    JIANG, J. et al. Sperm-associated antigen 9 promotes astrocytoma cell invasion through the upregulation of podocalyxin. Mol. Med. Rep. 10, 417–422 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    CHEN, F. et al. SPAG9 expression is increased in human prostate cancer and promotes cell motility, invasion and angiogenesis in vitro. Oncol. Rep. 32, 2533–2540 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Lou, G. et al. Direct targeting sperm-associated antigen 9 by miR-141 influences hepatocellular carcinoma cell growth and metastasis via JNK pathway. J. Exp. Clin. Cancer Res. 35, 14 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Wang, X. et al. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma. Biochem. Biophys. Res. Commun. 470, 620–626 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Yan, Q. et al. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. OncoTargets Ther. 9, 1067 (2016).

    CAS 

    Google Scholar
     

  • 45.

    Jagadish, N. et al. Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. Tumor Biol. 37, 13101–13110 (2016).

    CAS 

    Google Scholar
     

  • 46.

    Garg, M. et al. Sperm-associated antigen 9: a Novel diagnostic marker for thyroid cancer. J. Clin. Endocrinol. Metab. 94, 4613–4618 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Kanojia, D. et al. Sperm associated antigen 9 expression and humoral response in chronic myeloid leukemia. Leuk. Res. 34, 858–863 (2010).

    CAS 

    Google Scholar
     

  • 48.

    Yu, P. et al. Expression and clinical significance of sperm-associated antigen 9 in patients with endometrial carcinoma. Int. J. Gynecologic Cancer 22, 87–93 (2012).


    Google Scholar
     

  • 49.

    Wang, Y. et al. Clinical significance and biological roles of SPAG9 overexpression in non-small cell lung cancer. Lung Cancer 81, 266–272 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Kanojia, D. et al. Sperm associated antigen 9 plays an important role in bladder transitional cell carcinoma. PLoS ONE 8, e81348 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Xie, C. et al. Overexpression of SPAG9 correlates with poor prognosis and tumor progression in hepatocellular carcinoma. Tumor Biol. 35, 7685–7691 (2014).

    CAS 

    Google Scholar
     

  • 52.

    Agarwal, S. et al. Sperm associated antigen 9 (SPAG9) expression and humoral response in benign and malignant salivary gland tumors. OncoImmunology 3, e974382 (2015).


    Google Scholar
     

  • 53.

    Seleit, I. et al. Immunohistochemical expression of sperm-associated antigen 9 in nonmelanoma skin cancer. Am. J. Dermatopathol. 37, 38–45 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Ren, B. et al. Cancer testis antigen SPAG9 is a promising marker for the diagnosis and treatment of lung cancer. Oncol. Rep. 35, 2599–2605 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Kanojia, D. et al. Sperm-associated antigen 9 Is a novel biomarker for colorectal cancer and is involved in tumor growth and tumorigenicity. Am. J. Pathol. 178, 1009–1020 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Qiang, F. et al. Role of scaffolding protein JLP on the progression of renal interstitial fibrosis in mice model of unilateral ureteral obstruction and its underlying mechanism. Chinese J. Nephrol. 32, 30–36 (2016).


    Google Scholar
     

  • 58.

    Eddy, A. A. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int. Suppl. 4, 2–8 (2014).

    CAS 

    Google Scholar
     

  • 59.

    Strutz, F. et al. TGF-β1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int. 59, 579–592 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Kim, W. et al. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology 17, 148–159 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Livingston, M. J. et al. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12, 976–998 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Bernard, M. et al. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. Autophagy 10, 2193–2207 (2015).


    Google Scholar
     

  • 63.

    Xu, Y. et al. Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int. J. Mol. Med. 31, 628–636 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Koesters, R. et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 177, 632–643 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Ding, Y. et al. Autophagy regulates TGF-βExpression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol. 25, 2835–2846 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Yan, Q. et al. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov. 4, 2 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Doi, S. et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol. Chem. 286, 8655–8665 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Investig. 124, 2299–2306 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Yanagita, M. Inhibitors/antagonists of TGF-beta system in kidney fibrosis. Nephrol. Dialysis Transplant. 27, 3686–3691 (2012).

    CAS 

    Google Scholar
     

  • 70.

    Ide, N. et al. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int. 90, 348–362 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Tanaka, M. et al. Expression of BMP-7 and USAG-1 (a BMP antagonist) in kidney development and injury. Kidney Int 73, 181–91 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–20 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Dudley, A. T., Lyons, K. M. & Robertson, E. J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795–807 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Eddy, A. A. & Neilson, E. G. Chronic kidney disease progression. J. Am. Soc. Nephrol. 17, 2964–2966 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814–822 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Takabatake, Y. et al. Autophagy and the kidney: health and disease. Nephrol. Dial. Transpl. 29, 1639–47 (2014).


    Google Scholar
     

  • 79.

    Periyasamy-Thandavan, S. et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 74, 631–640 (2008).

    CAS 

    Google Scholar
     

  • 80.

    Jiang, M. et al. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am. J. Pathol. 176, 1181–1192 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271–1283 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Li, L. et al. Autophagy Is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol. 176, 1767–1778 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Forbes, M. S., Thornhill, B. A. & Chevalier, R. L. Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am. J. Physiol.-Ren. Physiol. 301, F110–F117 (2011).

    CAS 

    Google Scholar
     

  • 84.

    Kim, S. I. et al. Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-β1. J. Biol. Chem. 287, 11677–11688 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Takaesu, G. et al. Activation of p38α/β MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J. Cell Biol. 175, 383–388 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Yang, C. et al. Sperm-associated antigen 9 overexpression correlates with poor prognosis and insensitive to Taxol treatment in breast cancer. Biomarkers 21, 62–67 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: