Home Nephro Research Autophagy in kidney homeostasis and disease

Autophagy in kidney homeostasis and disease

Credits to the Source Link Obum
Autophagy in kidney homeostasis and disease
  • 1.

    Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Oku, M. & Sakai, Y. Three distinct types of microautophagy based on membrane dynamics and molecular machineries. Bioessays 40, e1800008 (2018).

    PubMed 

    Google Scholar
     

  • 3.

    Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Morishita, H. & Mizushima, N. Diverse cellular roles of autophagy. Annu. Rev. Cell Dev. Biol. 35, 453–475 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Park, J. M. et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547–564 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Park, J. M. et al. ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy 14, 584–597 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zachari, M. & Ganley, I. G. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61, 585–596 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11, 468–476 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Walczak, M. & Martens, S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9, 424–425 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Lorincz, P. & Juhasz, G. Autophagosome-lysosome fusion. J. Mol. Biol. 432, 2462–2482 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Gatica, D., Lahiri, V. & Klionsky, D. J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20, 233–242 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Chang, K. et al. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy https://doi.org/10.1080/15548627.2019.1704117 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Aspernig, H. et al. Mitochondrial perturbations couple mTORC2 to autophagy in C. elegans. Cell Rep. 29, 1399–1409 e1395 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Herrero-Martin, G. et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677–685 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377–388 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Lee, J. W., Park, S., Takahashi, Y. & Wang, H. G. The association of AMPK with ULK1 regulates autophagy. PLoS One 5, e15394 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS 

    Google Scholar
     

  • 26.

    Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Loffler, A. S. et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7, 696–706 (2011).

    PubMed 

    Google Scholar
     

  • 28.

    Dunlop, E. A., Hunt, D. K., Acosta-Jaquez, H. A., Fingar, D. C. & Tee, A. R. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 7, 737–747 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Kim, J., Yang, G., Kim, Y., Kim, J. & Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 48, e224 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA 105, 3374–3379 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Huang, R. et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456–466 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Hariharan, N. et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 107, 1470–1482 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Lan, F., Cacicedo, J. M., Ruderman, N. & Ido, Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628–27635 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Hou, X. et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015–20026 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Ghosh, H. S., McBurney, M. & Robbins, P. D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Dai, H., Sinclair, D. A., Ellis, J. L. & Steegborn, C. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol. Ther. 188, 140–154 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285–292 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    B’Chir, W. et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683–7699 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Criollo, A. et al. The IKK complex contributes to the induction of autophagy. EMBO J. 29, 619–631 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Liu, S. et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8, 826–837 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Kim, S. I. et al. Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-beta1. J. Biol. Chem. 287, 11677–11688 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Ding, Y. et al. TGF-{beta}1 protects against mesangial cell apoptosis via induction of autophagy. J. Biol. Chem. 285, 37909–37919 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Bechtel, W. et al. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J. Am. Soc. Nephrol. 24, 727–743 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Chen, J., Chen, M. X., Fogo, A. B., Harris, R. C. & Chen, J. K. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J. Am. Soc. Nephrol. 24, 198–207 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Cina, D. P. et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J. Am. Soc. Nephrol. 23, 412–420 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Oshima, Y. et al. Prorenin receptor is essential for normal podocyte structure and function. J. Am. Soc. Nephrol. 22, 2203–2212 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Narita, M. et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966–970 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Rong, Y. et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl Acad. Sci. USA 108, 7826–7831 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Bork, T. et al. Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy https://doi.org/10.1080/15548627.2019.1705007 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Alghamdi, T. A. et al. Janus kinase 2 regulates transcription factor EB expression and autophagy completion in glomerular podocytes. J. Am. Soc. Nephrol. 28, 2641–2653 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902–913 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Livingston, M. J. et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 15, 2142–2162 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    McWilliams, T. G. et al. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333–345 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Lenoir, O. et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11, 1130–1145 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Matsuda, J. et al. Antioxidant role of autophagy in maintaining the integrity of glomerular capillaries. Autophagy 14, 53–65 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    O’Sullivan, E. D., Hughes, J. & Ferenbach, D. A. Renal aging: causes and consequences. J. Am. Soc. Nephrol. 28, 407–420 (2017).

    PubMed 

    Google Scholar
     

  • 63.

    Nakamura, S. et al. Suppression of autophagic activity by Rubicon is a signature of aging. Nat. Commun. 10, 847 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Cui, J. et al. Age-related changes in the function of autophagy in rat kidneys. Age 34, 329–339 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Yamamoto-Nonaka, K. et al. Cathepsin D in podocytes is important in the pathogenesis of proteinuria and CKD. J. Am. Soc. Nephrol. 27, 2685–2700 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Chuang, P. Y. et al. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am. J. Physiol. Renal Physiol. 313, F621–F628 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Zhang, L. et al. C/EBPalpha deficiency in podocytes aggravates podocyte senescence and kidney injury in aging mice. Cell Death Dis. 10, 684 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Yamamoto, T. et al. Time-dependent dysregulation of autophagy: implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy 12, 801–813 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Kaushal, G. P. & Shah, S. V. Autophagy in acute kidney injury. Kidney Int. 89, 779–791 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271–1283 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Takahashi, A. et al. Autophagy guards against cisplatin-induced acute kidney injury. Am. J. Pathol. 180, 517–525 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Hsiao, H. W. et al. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock 37, 289–296 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Leventhal, J. S. et al. Autophagy limits endotoxemic acute kidney injury and alters renal tubular epithelial cell cytokine expression. PloS One 11, e0150001 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Mei, S. et al. Autophagy is activated to protect against endotoxic acute kidney injury. Sci. Rep. 6, 22171 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Howell, G. M. et al. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PloS One 8, e69520 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Ko, G. J., Bae, S. Y., Hong, Y. A., Pyo, H. J. & Kwon, Y. J. Radiocontrast-induced nephropathy is attenuated by autophagy through regulation of apoptosis and inflammation. Hum. Exp. Toxicol. 35, 724–736 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Lin, Q. et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 26, 101254 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Lei, R. et al. Mitophagy plays a protective role in iodinated contrast-induced acute renal tubular epithelial cells injury. Cell Physiol. Biochem. 46, 975–985 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Lempiainen, J. et al. Caloric restriction ameliorates kidney ischaemia/reperfusion injury through PGC-1alpha-eNOS pathway and enhanced autophagy. Acta Physiol. 208, 410–421 (2013).

    CAS 

    Google Scholar
     

  • 80.

    Grahammer, F. et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc. Natl Acad. Sci. USA 111, E2817–E2826 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Chien, C. T., Shyue, S. K. & Lai, M. K. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 84, 1183–1190 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Rovetta, F. et al. ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp. Cell Res. 318, 238–250 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Herzog, C., Yang, C., Holmes, A. & Kaushal, G. P. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am. J. Physiol. Renal Physiol. 303, F1239–F1250 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Jankauskas, S. S. et al. The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Sci. Rep. 7, 44430 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Xie, Y. et al. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway. Cell Death Dis. 9, 338 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Bhatia, D. & Choi, M. E. The emerging role of mitophagy in kidney diseases. J. Life Sci. 1, 13–22 (2019).


    Google Scholar
     

  • 87.

    Wang, Y., Cai, J., Tang, C. & Dong, Z. Mitophagy in acute kidney injury and kidney repair. Cells 9, 338 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 88.

    Tang, C. et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14, 880–897 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Tang, C. et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 10, 677 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Wang, Y. et al. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death Dis. 9, 1113 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Zhao, C. et al. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function. Oncotarget 8, 20988–21000 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Liu, J. X. et al. Disturbance of mitochondrial dynamics and mitophagy in sepsis-induced acute kidney injury. Life Sci. 235, 116828 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Chang-Panesso, M. et al. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501–5517 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA 111, 1527–1532 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Rosen, S. & Heyman, S. Concerning cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int. 94, 218 (2018).

    PubMed 

    Google Scholar
     

  • 97.

    Kumar, S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int. 93, 27–40 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Li, L., Wang, Z. V., Hill, J. A. & Lin, F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J. Am. Soc. Nephrol. 25, 305–315 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Cheng, H., Fan, X., Lawson, W. E., Paueksakon, P. & Harris, R. C. Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int. 88, 85–94 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Taji, F. et al. Autophagy induction reduces telomerase activity in HeLa cells. Mech. Ageing Dev. 163, 40–45 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Baisantry, A. et al. Autophagy induces prosenescent changes in proximal tubular S3 segments. J. Am. Soc. Nephrol. 27, 1609–1616 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Canaud, G. et al. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci. Transl. Med. 11, eaav4754 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Li, L. et al. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J. Clin. Invest. 129, 2374–2389 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Shu, S. et al. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine 37, 269–280 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Li, L., Zepeda-Orozco, D., Black, R. & Lin, F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol. 176, 1767–1778 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Livingston, M. J. et al. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12, 976–998 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Yan, Q. et al. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov. 4, 2 (2018).

    PubMed 

    Google Scholar
     

  • 110.

    Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Thoen, L. F. et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55, 1353–1360 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Xue, X. et al. Protein kinase Calpha drives fibroblast activation and kidney fibrosis by stimulating autophagic flux. J. Biol. Chem. 293, 11119–11130 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 113.

    Li, L. et al. Forkhead box O3 (FoxO3) regulates kidney tubular autophagy following urinary tract obstruction. J. Biol. Chem. 292, 13774–13783 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Yang, X. et al. WNT1-inducible signaling protein-1 mediates TGF-beta1-induced renal fibrosis in tubular epithelial cells and unilateral ureteral obstruction mouse models via autophagy. J. Cell Physiol. 235, 2009–2022 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Noh, M. R., Woo, C. H., Park, M. J., In Kim, J. & Park, K. M. Ablation of C/EBP homologous protein attenuates renal fibrosis after ureteral obstruction by reducing autophagy and microtubule disruption. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1634–1641 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Kim, W. Y. et al. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology 17, 148–159 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Xu, G. et al. Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis. Aging 8, 977–985 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Ding, Y. et al. Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol. 25, 2835–2846 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Li, H. et al. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 12, 1472–1486 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Peng, X. et al. ATG5-mediated autophagy suppresses NF-kappaB signaling to limit epithelial inflammatory response to kidney injury. Cell Death Dis. 10, 253 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Xu, Y., Wang, J., Xu, W., Ding, F. & Ding, W. Prohibitin 2-mediated mitophagy attenuates renal tubular epithelial cells injury by regulating mitochondrial dysfunction and NLRP3 inflammasome activation. Am. J. Physiol. Renal Physiol. 316, F396–F407 (2019).

    PubMed 

    Google Scholar
     

  • 122.

    Nam, S. A. et al. Autophagy in FOXD1 stroma-derived cells regulates renal fibrosis through TGF-beta and NLRP3 inflammasome pathway. Biochem. Biophys. Res. Commun. 508, 965–972 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Nam, S. A. et al. Autophagy attenuates tubulointerstital fibrosis through regulating transforming growth factor-beta and NLRP3 inflammasome signaling pathway. Cell Death Dis. 10, 78 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Bhatia, D. et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826 (2019).

    PubMed Central 

    Google Scholar
     

  • 125.

    Li, S. et al. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic. Biol. Med. 152, 632–649 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Liu, W. J. et al. Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease. Cell Death Dis. 10, 806 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Tagawa, A. et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65, 755–767 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 129.

    Yang, D. et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol. Life Sci. 75, 669–688 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 130.

    Ding, Y. & Choi, M. E. Autophagy in diabetic nephropathy. J. Endocrinol. 224, R15–R30 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Zhao, X. et al. Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J. Pathol. 245, 235–248 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Liu, J. et al. beta-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis. 7, e2183 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 133.

    Wang, X. et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int. 86, 712–725 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Li, W. et al. FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/Parkin pathway. Endocrinology 158, 2155–2167 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 135.

    Zhou, D. et al. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis. 10, 524 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Wang, H. et al. Podocyte-specific knockin of PTEN protects kidney from hyperglycemia. Am. J. Physiol. Renal Physiol. 314, F1096–F1107 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 137.

    Liu, M. et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat. Commun. 8, 413 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Li, L. et al. Signal regulatory protein alpha protects podocytes through promoting autophagic activity. JCI Insight 5, e124747 (2019).


    Google Scholar
     

  • 139.

    Zhan, M., Usman, I. M., Sun, L. & Kanwar, Y. S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol. 26, 1304–1321 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Ma, Z. et al. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney. J. Clin. Invest. (in the press).

  • 141.

    Vallon, V. et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Renal Physiol. 304, F156–F167 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Wang, Y., Zheng, Z. J., Jia, Y. J., Yang, Y. L. & Xue, Y. M. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease. J. Transl. Med. 16, 146 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Zhang, Y. et al. MicroRNA-22 promotes renal tubulointerstitial fibrosis by targeting PTEN and suppressing autophagy in diabetic nephropathy. J. Diabetes Res. 2018, 4728645 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 144.

    Huang, C. et al. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci. Rep. 6, 29196 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Chen, K. et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 9, 105 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 146.

    Brijmohan, A. S. et al. HDAC6 inhibition promotes transcription factor EB activation and is protective in experimental kidney disease. Front. Pharmacol. 9, 34 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 147.

    Pontrelli, P. et al. Deregulation of autophagy under hyperglycemic conditions is dependent on increased lysine 63 ubiquitination: a candidate mechanism in the progression of diabetic nephropathy. J. Mol. Med. 96, 645–659 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 148.

    Yamahara, K. et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J. Am. Soc. Nephrol. 24, 1769–1781 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 149.

    Tan, J., Wang, M., Song, S., Miao, Y. & Zhang, Q. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload. Histol. Histopathol. 33, 681–690 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 150.

    Nolin, A. C. et al. Proteinuria causes dysfunctional autophagy in the proximal tubule. Am. J. Physiol. Renal Physiol. 311, F1271–F1279 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 151.

    Xu, D. et al. NIX-mediated mitophagy protects against proteinuria-induced tubular cell apoptosis and renal injury. Am. J. Physiol. Renal Physiol. 316, F382–F395 (2019).

    PubMed 

    Google Scholar
     

  • 152.

    Kitada, M. et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp. Diabetes Res. 2011, 908185 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Kitada, M. et al. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia 59, 1307–1317 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Sakai, S. et al. Proximal tubule autophagy differs in type 1 and 2 diabetes. J. Am. Soc. Nephrol. 30, 929–945 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Saito, A. et al. Significance of proximal tubular metabolism of advanced glycation end products in kidney diseases. Ann. NY Acad. Sci. 1043, 637–643 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Takahashi, A. et al. Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules. Diabetes 66, 1359–1372 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 157.

    Liu, W. J. et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J. Biol. Chem. 290, 20499–20510 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 158.

    Xavier, S. et al. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS One 5, e12995 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 159.

    Fan, Y. et al. BAMBI elimination enhances alternative TGF-beta signaling and glomerular dysfunction in diabetic mice. Diabetes 64, 2220–2233 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 160.

    Fiorentino, L. et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol. Med. 5, 441–455 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 161.

    Xu, L., Fan, Q., Wang, X., Zhao, X. & Wang, L. Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell Death Dis. 7, e2445 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 162.

    Rosenberg, A. Z. & Kopp, J. B. Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 12, 502–517 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 163.

    Kumar, V. et al. Disrupted apolipoprotein L1-miR193a axis dedifferentiates podocytes through autophagy blockade in an APOL1 risk milieu. Am. J. Physiol. Cell Physiol. 317, C209–C225 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 164.

    Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 165.

    Asanuma, K. et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J. 17, 1165–1167 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 166.

    Yi, M. et al. Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am. J. Physiol. Renal Physiol. 313, F74–F84 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 167.

    Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26, 1040–1052 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Zeng, C. et al. Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. J. Pathol. 234, 203–213 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 169.

    Ogawa-Akiyama, A. et al. Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome. PLoS One 15, e0228337 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 170.

    Zschiedrich, S. et al. Targeting mTOR signaling can prevent the progression of FSGS. J. Am. Soc. Nephrol. 28, 2144–2157 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 171.

    Torres, V. E. & Harris, P. C. Progress in the understanding of polycystic kidney disease. Nat. Rev. Nephrol. 15, 70–72 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 172.

    Belibi, F. et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300, F1235–F1243 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 173.

    Nowak, K. L. & Edelstein, C. L. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell. Signal. 68, 109518 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 174.

    Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199–219 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 175.

    Pampliega, O. & Cuervo, A. M. Autophagy and primary cilia: dual interplay. Curr. Opin. Cell Biol. 39, 1–7 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 176.

    Wang, S., Livingston, M. J., Su, Y. & Dong, Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 11, 607–616 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 177.

    Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 178.

    Zhu, P., Sieben, C. J., Xu, X., Harris, P. C. & Lin, X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum. Mol. Genet. 26, 158–172 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 179.

    Cornec-Le Gall, E., Alam, A. & Perrone, R. D. Autosomal dominant polycystic kidney disease. Lancet 393, 919–935 (2019).

    PubMed 

    Google Scholar
     

  • 180.

    Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 181.

    Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 182.

    Li, A. et al. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis. J. Cell Mol. Med. 21, 1619–1635 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 183.

    Kou, P., Wei, S. & Xiong, F. Recent advances of mTOR inhibitors use in autosomal dominant polycystic kidney disease: is the road still open? Curr. Med. Chem. 26, 2962–2973 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 184.

    Calvo-Rubio, M. et al. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. Aging Cell 15, 477–487 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 185.

    Shavlakadze, T. et al. Short-term low-dose mTORC1 inhibition in aged rats counter-regulates age-related gene changes and blocks age-related kidney pathology. J. Gerontol. A Biol. Sci. Med. Sci. 73, 845–852 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 186.

    Hong, Q. et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 187.

    Ren, H. et al. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol. Cell Endocrinol. 500, 110628 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 188.

    Li, X. Y. et al. Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol. Ther. Nucleic Acids 9, 48–56 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 189.

    Song, G. et al. Astragaloside IV ameliorates early diabetic nephropathy by inhibition of MEK1/2-ERK1/2-RSK2 signaling in streptozotocin-induced diabetic mice. J. Int. Med. Res. 46, 2883–2897 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 190.

    Guo, H. et al. Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKalpha-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci. Rep. 7, 6852 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 191.

    Wang, X. et al. Astragaloside IV represses high glucose-induced mesangial cells activation by enhancing autophagy via SIRT1 deacetylation of NF-kappaB p65 subunit. Drug Des. Devel. Ther. 12, 2971–2980 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 192.

    Morel, E. et al. Autophagy: a druggable process. Annu. Rev. Pharmacol. Toxicol. 57, 375–398 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 193.

    Panda, P. K. et al. Chemical screening approaches enabling drug discovery of autophagy modulators for biomedical applications in human diseases. Front. Cell Dev. Biol. 7, 38 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 194.

    Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 195.

    Williams, A. et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295–305 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 196.

    Lin, T. A., Wu, V. C. & Wang, C. Y. Autophagy in chronic kidney diseases. Cells 8, 61 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 197.

    Pasquier, B. Autophagy inhibitors. Cell Mol. Life Sci. 73, 985–1001 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 198.

    Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol. 12, 587–609 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 199.

    Viana, S. D., Reis, F. & Alves, R. Therapeutic use of mTOR inhibitors in renal diseases: advances, drawbacks, and challenges. Oxid. Med. Cell Longev. 2018, 3693625 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 200.

    Larson-Casey, J. L., Deshane, J. S., Ryan, A. J., Thannickal, V. J. & Carter, A. B. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44, 582–596 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 201.

    Rinschen, M. M. et al. A multi-layered quantitative in vivo expression atlas of the podocyte unravels kidney disease candidate genes. Cell Rep. 23, 2495–2508 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: