Home Nephro News Global transcriptomic changes occur in aged mouse podocytes.

Global transcriptomic changes occur in aged mouse podocytes.

Credits to the Source Link Obum
Global transcriptomic changes occur in aged mouse podocytes.
    • Denic A.
    • Mathew J.
    • Lerman L.O.
    • et al.

    Single-Nephron Glomerular Filtration Rate in Healthy Adults.

    N Engl J Med. 2017; 376: 2349-2357

    • Denic A.
    • Lieske J.C.
    • Chakkera H.A.
    • et al.

    The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging.

    J Am Soc Nephrol. 2017; 28: 313-320

    • Cianciolo R.E.
    • Benali S.L.
    • Aresu L.

    Aging in the Canine Kidney.

    Vet Pathol. 2016; 53: 299-308

    • Wiggins J.E.
    • Goyal M.
    • Sanden S.K.
    • et al.

    Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction.

    J Am Soc Nephrol. 2005; 16: 2953-2966

  • Aging in the glomerulus.

    J Gerontol A Biol Sci Med Sci. 2012; 67: 1358-1364

    • Floege J.
    • Hackmann B.
    • Kliem V.
    • et al.

    Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: a podocyte disease.

    Kidney Int. 1997; 51: 230-243

    • Wang Y.
    • Eng D.G.
    • Pippin J.W.
    • et al.

    Sex differences in transcriptomic profiles in aged kidney cells of renin lineage.

    Aging (Albany NY). 2018; 10: 606-621

    • Hamatani H.
    • Eng D.G.
    • Kaverina N.V.
    • et al.

    Lineage tracing aged mouse kidneys shows lower number of cells of renin lineage and reduced responsiveness to RAAS inhibition.

    Am J Physiol Renal Physiol. 2018; 315: F97-F109

    • Oxburgh L.
    • Carroll T.J.
    • Cleaver O.
    • et al.

    Re)Building a Kidney.

    J Am Soc Nephrol. 2017; 28: 1370-1378

    • Stefanska A.
    • Eng D.
    • Kaverina N.
    • et al.

    Interstitial pericytes decrease in aged mouse kidneys.

    Aging (Albany NY). 2015; 7: 370-382

    • Schneider R.R.
    • Eng D.G.
    • Kutz J.N.
    • et al.

    Compound effects of aging and experimental FSGS on glomerular epithelial cells.

    Aging (Albany NY). 2017; 9: 524-546

    • Sweetwyne M.T.
    • Pippin J.W.
    • Eng D.G.
    • et al.

    The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age.

    Kidney Int. 2017; 91: 1126-1145

    • McNicholas B.A.
    • Eng D.G.
    • Lichtnekert J.
    • et al.

    Reducing mTOR augments parietal epithelial cell density in a model of acute podocyte depletion and in aged kidneys.

    Am J Physiol Renal Physiol. 2016; 311: F626-639

    • Roeder S.S.
    • Stefanska A.
    • Eng D.G.
    • et al.

    Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age.

    Am J Physiol Renal Physiol. 2015; 309: F164-178

  • Molecular mechanisms of renal aging.

    Kidney Int. 2017; 92: 569-579

    • Camici M.
    • Carpi A.
    • Cini G.
    • et al.

    Podocyte dysfunction in aging–related glomerulosclerosis.

    Front Biosci (Schol Ed). 2011; 3: 995-1006

  • Podocytes and glomerular function with aging.

    Semin Nephrol. 2009; 29: 587-593

  • The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli.

    Kidney Int. 2012; 82: 270-277

    • Hommos M.S.
    • Glassock R.J.
    • Rule A.D.

    Structural and Functional Changes in Human Kidneys with Healthy Aging.

    J Am Soc Nephrol. 2017; 28: 2838-2844

    • Puelles V.G.
    • Cullen-McEwen L.A.
    • Taylor G.E.
    • et al.

    Human podocyte depletion in association with older age and hypertension.

    Am J Physiol Renal Physiol. 2016; 310: F656-F668

    • Hodgin J.B.
    • Bitzer M.
    • Wickman L.
    • et al.

    Glomerular Aging and Focal Global Glomerulosclerosis: A Podometric Perspective.

    J Am Soc Nephrol. 2015; 26: 3162-3178

    • Shankland S.J.
    • Freedman B.S.
    • Pippin J.W.

    Can podocytes be regenerated in adults?.

    Curr Opin Nephrol Hypertens. 2017; 26: 154-164

    • Chuang P.Y.
    • Cai W.
    • Li X.
    • et al.

    Reduction in podocyte SIRT1 accelerates kidney injury in aging mice.

    Am J Physiol Renal Physiol. 2017; 313: F621-F628

    • Noordmans G.A.
    • Hillebrands J.L.
    • van Goor H.
    • et al.

    A roadmap for the genetic analysis of renal aging.

    Aging Cell. 2015; 14: 725-733

    • Balaban R.S.
    • Nemoto S.
    • Finkel T.

    Mitochondria, oxidants, and aging.

    Cell. 2005; 120: 483-495

    • Sun N.
    • Youle R.J.
    • Finkel T.

    The Mitochondrial Basis of Aging.

    Mol Cell. 2016; 61: 654-666

    • Shiels P.G.
    • McGuinness D.
    • Eriksson M.
    • et al.

    The role of epigenetics in renal ageing.

    Nat Rev Nephrol. 2017; 13: 471-482

  • Epigenetics and aging.

    Sci Adv. 2016; 2e1600584

    • Valentijn F.A.
    • Falke L.L.
    • Nguyen T.Q.
    • et al.

    Cellular senescence in the aging and diseased kidney.

    J Cell Commun Signal. 2018; 12: 69-82

    • Lenoir O.
    • Tharaux P.L.
    • Huber T.B.

    Autophagy in kidney disease and aging: lessons from rodent models.

    Kidney Int. 2016; 90: 950-964

    • Lee J.H.
    • Jung K.J.
    • Kim J.W.
    • et al.

    Suppression of apoptosis by calorie restriction in aged kidney.

    Exp Gerontol. 2004; 39: 1361-1368

  • Programmed cell death in aging.

    Ageing Res Rev. 2015; 23: 90-100

    • Wheeler H.E.
    • Metter E.J.
    • Tanaka T.
    • et al.

    Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

    PLoS Genet. 2009; 5e1000685

    • Melk A.
    • Mansfield E.S.
    • Hsieh S.C.
    • et al.

    Transcriptional analysis of the molecular basis of human kidney aging using cDNA microarray profiling.

    Kidney Int. 2005; 68: 2667-2679

    • Rodwell G.E.
    • Sonu R.
    • Zahn J.M.
    • et al.

    A transcriptional profile of aging in the human kidney.

    PLoS Biol. 2004; 2: e427

    • Fu J.
    • Wei C.
    • Lee K.
    • et al.

    Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes.

    J Am Soc Nephrol. 2016; 27: 1006-1014

    • Chozinski T.J.
    • Mao C.
    • Halpern A.R.
    • et al.

    Volumetric, Nanoscale Optical Imaging of Mouse and Human Kidney via Expansion Microscopy.

    Sci Rep. 2018; 8: 10396

    • Kaverina N.V.
    • Eng D.G.
    • Freedman B.S.
    • et al.

    Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate.

    Kidney Int. 2019; 96: 597-611

    • Merico D.
    • Isserlin R.
    • Stueker O.
    • et al.

    Enrichment map: a network-based method for gene-set enrichment visualization and interpretation.

    PLoS One. 2010; 5e13984

    • Alexa A.
    • Rahnenfuhrer J.
    • Lengauer T.

    Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.

    Bioinformatics. 2006; 22: 1600-1607

    • Liberzon A.
    • Birger C.
    • Thorvaldsdottir H.
    • et al.

    The Molecular Signatures Database (MSigDB) hallmark gene set collection.

    Cell Syst. 2015; 1: 417-425

    • Ramilowski J.A.
    • Goldberg T.
    • Harshbarger J.
    • et al.

    A draft network of ligand-receptor-mediated multicellular signalling in human.

    Nat Commun. 2015; 6: 7866

    • Karaiskos N.
    • Rahmatollahi M.
    • Boltengagen A.
    • et al.

    A Single-Cell Transcriptome Atlas of the Mouse Glomerulus.

    J Am Soc Nephrol. 2018; 29: 2060-2068

    • Potter A.S.
    • Drake K.
    • Brunskill E.W.
    • et al.

    A bigenic mouse model of FSGS reveals perturbed pathways in podocytes, mesangial cells and endothelial cells.

    PLoS One. 2019; 14e0216261

  • KEGG: kyoto encyclopedia of genes and genomes.

    Nucleic Acids Res. 2000; 28: 27-30

  • Pathview: an R/Bioconductor package for pathway-based data integration and visualization.

    Bioinformatics. 2013; 29: 1830-1831

    • Lopez-Otin C.
    • Blasco M.A.
    • Partridge L.
    • et al.

    The hallmarks of aging.

    Cell. 2013; 153: 1194-1217

  • CSGene: a literature-based database for cell senescence genes and its application to identify critical cell aging pathways and associated diseases.

    Cell Death Dis. 2016; 7e2053

    • Fukasawa H.
    • Bornheimer S.
    • Kudlicka K.
    • et al.

    Slit diaphragms contain tight junction proteins.

    J Am Soc Nephrol. 2009; 20: 1491-1503

    • Schnabel E.
    • Anderson J.M.
    • Farquhar M.G.

    The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium.

    J Cell Biol. 1990; 111: 1255-1263

    • Boerries M.
    • Grahammer F.
    • Eiselein S.
    • et al.

    Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks.

    Kidney Int. 2013; 83: 1052-1064

  • [Characteristics of the examination and registration of the case histories of military personnel subjected to the action of occupational hazards].

    Voen Med Zh. 1976; : 73-74

    • Gong Y.
    • Sunq A.
    • Roth R.A.
    • et al.

    Inducible Expression of Claudin-1 in Glomerular Podocytes Generates Aberrant Tight Junctions and Proteinuria through Slit Diaphragm Destabilization.

    J Am Soc Nephrol. 2017; 28: 106-117

    • Hartleben B.
    • Schweizer H.
    • Lubben P.
    • et al.

    Neph-Nephrin proteins bind the Par3-Par6-atypical protein kinase C (aPKC) complex to regulate podocyte cell polarity.

    J Biol Chem. 2008; 283: 23033-23038

    • Satoh D.
    • Hirose T.
    • Harita Y.
    • et al.

    aPKClambda maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface.

    J Biochem. 2014; 156: 115-128

    • Hartleben B.
    • Widmeier E.
    • Suhm M.
    • et al.

    aPKClambda/iota and aPKCzeta contribute to podocyte differentiation and glomerular maturation.

    J Am Soc Nephrol. 2013; 24: 253-267

    • Shirata N.
    • Ihara K.I.
    • Yamamoto-Nonaka K.
    • et al.

    Glomerulosclerosis Induced by Deficiency of Membrane-Associated Guanylate Kinase Inverted 2 in Kidney Podocytes.

    J Am Soc Nephrol. 2017; 28: 2654-2669

    • Alvarez M.J.
    • Shen Y.
    • Giorgi F.M.
    • et al.

    Functional characterization of somatic mutations in cancer using network-based inference of protein activity.

    Nat Genet. 2016; 48: 838-847

    • Margolin A.A.
    • Nemenman I.
    • Basso K.
    • et al.

    ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.

    BMC Bioinformatics. 2006; 7: S7

    • Lee J.W.
    • Chou C.L.
    • Knepper M.A.

    Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment-Specific Transcriptomes.

    J Am Soc Nephrol. 2015; 26: 2669-2677

    • Woroniecka K.I.
    • Park A.S.
    • Mohtat D.
    • et al.

    Transcriptome analysis of human diabetic kidney disease.

    Diabetes. 2011; 60: 2354-2369

    • Shved N.
    • Warsow G.
    • Eichinger F.
    • et al.

    Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

    Sci Rep. 2017; 7: 8576

    • Itoh M.
    • Nakadate K.
    • Matsusaka T.
    • et al.

    Effects of the differential expression of ZO-1 and ZO-2 on podocyte structure and function.

    Genes Cells. 2018; 23: 546-556

    • Ni J.
    • Bao S.
    • Johnson R.I.
    • et al.

    MAGI-1 Interacts with Nephrin to Maintain Slit Diaphragm Structure through Enhanced Rap1 Activation in Podocytes.

    J Biol Chem. 2016; 291: 24406-24417

    • Guo H.
    • Callaway J.B.
    • Ting J.P.

    Inflammasomes: mechanism of action, role in disease, and therapeutics.

    Nat Med. 2015; 21: 677-687

    • Bollee G.
    • Flamant M.
    • Schordan S.
    • et al.

    Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis.

    Nat Med. 2011; 17: 1242-1250

    • Lee H.W.
    • Khan S.Q.
    • Khaliqdina S.
    • et al.

    Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1.

    J Biol Chem. 2017; 292: 732-747

    • Rifat Y.
    • Parekh V.
    • Wilanowski T.
    • et al.

    Regional neural tube closure defined by the Grainy head-like transcription factors.

    Dev Biol. 2010; 345: 237-245

    • Aue A.
    • Hinze C.
    • Walentin K.
    • et al.

    A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion.

    J Am Soc Nephrol. 2015; 26: 2704-2715

    • Senga K.
    • Mostov K.E.
    • Mitaka T.
    • et al.

    Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25.

    Mol Biol Cell. 2012; 23: 2845-2855

    • Werth M.
    • Walentin K.
    • Aue A.
    • et al.

    The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex.

    Development. 2010; 137: 3835-3845

  • Role of grainyhead-like 2 in the formation of functional tight junctions.

    Tissue Barriers. 2013; 1e23495

  • Long noncoding RNAs in kidney and cardiovascular diseases.

    Nat Rev Nephrol. 2016; 12: 360-373

    • Ignarski M.
    • Islam R.
    • Muller R.U.

    Long Non-Coding RNAs in Kidney Disease.

    Int J Mol Sci. 2019; 20

    • Kim T.K.
    • Hemberg M.
    • Gray J.M.
    • et al.

    Widespread transcription at neuronal activity-regulated enhancers.

    Nature. 2010; 465: 182-187

    • Bester A.C.
    • Lee J.D.
    • Chavez A.
    • et al.

    An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in Drug Resistance.

    Cell. 2018; 173: 649-664 e620

    • De Cecco M.
    • Ito T.
    • Petrashen A.P.
    • et al.

    L1 drives IFN in senescent cells and promotes age-associated inflammation.

    Nature. 2019; 566: 73-78

    • Kimmel J.C.
    • Penland L.
    • Rubinstein N.D.
    • et al.

    Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging.

    Genome Res. 2019; 29: 2088-2103

    • Park J.
    • Shrestha R.
    • Qiu C.
    • et al.

    Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease.

    Science. 2018; 360: 758-763

    • Han X.
    • Wang R.
    • Zhou Y.
    • et al.

    Mapping the Mouse Cell Atlas by Microwell-Seq.

    Cell. 2018; 172 (): 1091-1107

    • Adam M.
    • Potter A.S.
    • Potter S.S.

    Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development.

    Development. 2017; 144: 3625-3632

    • Shigehara T.
    • Zaragoza C.
    • Kitiyakara C.
    • et al.

    Inducible podocyte-specific gene expression in transgenic mice.

    J Am Soc Nephrol. 2003; 14: 1998-2003

    • Perl A.K.
    • Wert S.E.
    • Nagy A.
    • et al.

    Early restriction of peripheral and proximal cell lineages during formation of the lung.

    Proc Natl Acad Sci U S A. 2002; 99: 10482-10487

    • Madisen L.
    • Zwingman T.A.
    • Sunkin S.M.
    • et al.

    A robust and high-throughput Cre reporting and characterization system for the whole mouse brain.

    Nat Neurosci. 2010; 13: 133-140

    • Eng D.G.
    • Kaverina N.V.
    • Schneider R.R.S.
    • et al.

    Detection of renin lineage cell transdifferentiation to podocytes in the kidney glomerulus with dual lineage tracing.

    Kidney Int. 2018; 93: 1240-1246

    • Kaverina N.V.
    • Eng D.G.
    • Largent A.D.
    • et al.

    WT1 Is Necessary for the Proliferation and Migration of Cells of Renin Lineage Following Kidney Podocyte Depletion.

    Stem Cell Reports. 2017; 9: 1152-1166

    • Kaverina N.V.
    • Kadoya H.
    • Eng D.G.
    • et al.

    Tracking the stochastic fate of cells of the renin lineage after podocyte depletion using multicolor reporters and intravital imaging.

    PLoS One. 2017; 12e0173891

    • Suzuki T.
    • Eng D.G.
    • McClelland A.D.
    • et al.

    Cells of NG2 lineage increase in glomeruli of mice following podocyte depletion.

    Am J Physiol Renal Physiol. 2018; 315: F1449-F1464

    • Goldberg S.
    • Adair-Kirk T.L.
    • Senior R.M.
    • et al.

    Maintenance of glomerular filtration barrier integrity requires laminin alpha5.

    J Am Soc Nephrol. 2010; 21: 579-586

    • Marshall C.B.
    • Krofft R.D.
    • Pippin J.W.
    • et al.

    CDK inhibitor p21 is prosurvival in adriamycin-induced podocyte injury, in vitro and in vivo.

    Am J Physiol Renal Physiol. 2010; 298: F1140-1151

    • Heeringa S.F.
    • Vlangos C.N.
    • Chernin G.
    • et al.

    Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome.

    Nephrol Dial Transplant. 2008; 23: 3527-3533

    • Liao Y.
    • Smyth G.K.
    • Shi W.

    The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote.

    Nucleic Acids Res. 2013; 41: e108

    • Anders S.
    • Pyl P.T.
    • Huber W.

    HTSeq–a Python framework to work with high-throughput sequencing data.

    Bioinformatics. 2015; 31: 166-169

  • Differential expression analysis for sequence count data.

    Genome Biol. 2010; 11: R106

    • Subramanian A.
    • Tamayo P.
    • Mootha V.K.
    • et al.

    Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

    Proc Natl Acad Sci U S A. 2005; 102: 15545-15550

    • Xiao Y.
    • Hsiao T.H.
    • Suresh U.
    • et al.

    A novel significance score for gene selection and ranking.

    Bioinformatics. 2014; 30: 801-807

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: