Home Nephro Research Glomerular endothelial cell heterogeneity in Alport syndrome

Glomerular endothelial cell heterogeneity in Alport syndrome

Credits to the Source Link Obum
Glomerular endothelial cell heterogeneity in Alport syndrome
  • 1.

    Yamanaka, N. & Shimizu, A. Role of glomerular endothelial damage in progressive renal disease. Kidney Blood Press. Res 22(1–2), 13–20 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Karaiskos, N. et al. A single-cell transcriptome atlas of the mouse glomerulus. J. Am. Soc. Nephrol. 29(8), 2060–2068 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Fu, J. et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol 30(4), 533–545 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Brunskill, E. W. & Potter, S. S. Gene expression programs of mouse endothelial cells in kidney development and disease. PLoS ONE 5(8), e12034 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Fu, J. et al. Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice. Kidney Int. 94(2), 326–345 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31(1), 118–138 (2020).

    PubMed 

    Google Scholar
     

  • 7.

    Sedrakyan, S. et al. Amniotic fluid stem cell-derived vesicles protect from VEGF-induced endothelial damage. Sci. Rep. 7(1), 16875 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Voyta, J. C. et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99(6), 2034–2040 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Pautz, A. et al. Cross-talk between nitric oxide and superoxide determines ceramide formation and apoptosis in glomerular cells. Kidney Int. 61(3), 790–796 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Sekine, A. et al. Prominin-1/CD133 expression as potential tissue-resident vascular endothelial progenitor cells in the pulmonary circulation. Am. J. Physiol. Lung Cell Mol. Physiol. 310(11), L1130–L1142 (2016).

    PubMed 

    Google Scholar
     

  • 11.

    Valle, I. et al. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66(3), 562–573 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Leone, T. C. & Kelly, D. P. Transcriptional control of cardiac fuel metabolism and mitochondrial function. Cold Spring Harb. Symp. Quant. Biol. 76, 175–182 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Liang, H. & Ward, W. F. PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30(4), 145–151 (2006).

    PubMed 

    Google Scholar
     

  • 14.

    Christensen, P. M. et al. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. FASEB J. 30(6), 2351–2359 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Ren, K. et al. Apolipoprotein M. Clin. Chim. Acta 15(446), 21–29 (2015).


    Google Scholar
     

  • 16.

    Tsukahara, R. et al. Heart-type fatty-acid-binding protein (FABP3) is a lysophosphatidic acid-binding protein in human coronary artery endothelial cells. FEBS Open Bio 31(4), 947–951 (2014).


    Google Scholar
     

  • 17.

    Wu, W. et al. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab. Dispos. 41(10), 1825–1834 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Vallon, V. et al. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am. J. Physiol. Renal Physiol. 302(10), F1293–F1299 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Sedrakyan, S. et al. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J. Am. Soc. Nephrol. 23(4), 661–673 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Vlahu, C. A. et al. Damage of the endothelial glycocalyx in dialysis patients. J. Am. Soc. Nephrol. 23(11), 1900–1908 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Padberg, J. S. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234(2), 335–343 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Williams, K. J. et al. Decorin deficiency enhances progressive nephropathy in diabetic mice. Am. J. Pathol. 171(5), 1441–1450 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Pozzi, A. & Zent, R. Integrins in kidney disease. J. Am. Soc. Nephrol. 24(7), 1034–1039 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Mathew, S. et al. Integrins in renal development. Pediatr. Nephrol. 27(6), 891–900 (2012).

    PubMed 

    Google Scholar
     

  • 25.

    Kreidberg, J. A. & Symons, J. M. Integrins in kidney development, function, and disease. Am. J. Physiol. Renal Physiol. 279(2), F233–F242 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Lelongt, B. & Ronco, P. Role of extracellular matrix in kidney development and repair. Pediatr. Nephrol. 18(8), 731–742 (2003).

    PubMed 

    Google Scholar
     

  • 27.

    Müller, U. & Brändli, A. W. Cell adhesion molecules and extracellular-matrix constituents in kidney development and disease. J. Cell Sci. 112(Pt 22), 3855–3867 (1999).

    PubMed 

    Google Scholar
     

  • 28.

    Bülow, R. D. & Boor, P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J. Histochem. Cytochem. 22, 22155419849388 (2019).


    Google Scholar
     

  • 29.

    Sato-Nishiuchi, R. et al. Polydom/SVEP1 is a ligand for integrin α9β1. J Biol Chem 287(30), 25615–25630 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Kelly-Goss, M. R. et al. Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Sci. Rep. 7(1), 9049 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Adamcic, U., Yurkiewich, A. & Coomber, B. L. Differential expression of Tie2 receptor and VEGFR2 by endothelial clones derived from isolated bovine mononuclear cells. PLoS ONE 7(12), e53385 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Barry, D.M., McMillan, E.A., Kunar, B., et al. Molecular determinants of nephron vascular specialization in the kidney. Nat. Commun. 10(1), 5705 (2019)

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Fathers, K. E. et al. Heterogeneity of Tie2 expression in tumor microcirculation influence of cancer type, implantation site, and response to therapy. Am. J. Pathol. 167(6), 1753–1762 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bapst, A.M., Dahl, S.L., Knöpfel, T., Wenger, R.H. Cre-mediated, loxP independent sequential recombination of a tripartite transcriptional stop cassette allows for partial read-through transcription. Biochim. Biophys. Acta Gene. Regul. Mech. 1863(8), 194568 (2020)

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Ostrowski, S. R. et al. Sympathoadrenal activation and endothelial damage in patients with varying degrees of acute infectious disease: an observational study. J. Crit. Care 30(1), 90–96 (2015).

    PubMed 

    Google Scholar
     

  • 36.

    Schmidt, E. P. et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat. Med. 18(8), 1217–1223 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Garsen, M. et al. Heparanase is essential for the development of acute experimental glomerulonephritis. Am. J. Pathol. 186(4), 805–815 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Lygizos, M. I. et al. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol. Rep. 1(6), e00153 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Schmidt, E. P. et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 194(4), 439–449 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Sun, X. et al. Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography-tandem mass spectrometry. Anal. Chem. 87(12), 6220–6227 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Witjas, F. M. R. et al. Concise review: the endothelial cell extracellular matrix regulates tissue homeostasis and repair. Stem Cells Transl. Med. 8(4), 375–382 (2019).

    PubMed 

    Google Scholar
     

  • 42.

    Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3), 319–328 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Annes, J. P., Rifkin, D. B. & Munger, J. S. The integrin alphaVbeta6 binds and activates latent TGFbeta3. FEBS Lett. 511(1–3), 65–68 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Hahm, K. et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am J Pathol. 170(1), 110–125 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Erikson, D. W. et al. Secreted phosphoprotein 1 (SPP1, osteopontin) binds to integrin alpha v beta 6 on porcine trophectoderm cells and integrin alpha v beta 3 on uterine luminal epithelial cells, and promotes trophectoderm cell adhesion and migration. Biol. Reprod. 81(5), 814–825 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Taooka, Y. et al. The integrin alpha9beta1 mediates adhesion to activated endothelial cells and transendothelial neutrophil migration through interaction with vascular cell adhesion molecule-1. J. Cell Biol. 145(2), 413–420 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Sato-Nishiuchi, R. et al. Polydom/SVEP1 is a ligand for integrin α9β1. J. Biol. Chem 287(30), 25615–25630 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Karpanen, T. et al. An evolutionarily conserved role for polydom/Svep1 during lymphatic vessel formation. Circ. Res. 120(8), 1263–1275 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Morooka, N. et al. Polydom is an extracellular matrix protein involved in lymphatic vessel remodeling. Circ. Res. 120(8), 1276–1288 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Rohlenova, K. et al. Endothelial cell metabolism in health and disease. Trends Cell Biol. 28(3), 224–236 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Wei, P. Z. & Szeto, C. C. Mitochondrial dysfunction in diabetic kidney disease. Clin. Chim. Acta 496, 108–116 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Makó, V. et al. Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-1β, TNF-α, and LPS. Cytometry A. 77(10), 962–970 (2010).

    PubMed 

    Google Scholar
     

  • 53.

    Mai, J. et al. An evolving new paradigm: endothelial cells–conditional innate immune cells. J. Hematol. Oncol. 6, 61 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    O’Carroll, S. J. et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. Neuroinflammation 12, 131 (2015).


    Google Scholar
     

  • 55.

    Dimou, P. et al. The human glomerular endothelial cells are potent pro-inflammatory contributors in an in vitro model of lupus nephritis. Sci. Rep. 9(1), 8348 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Guo, C. et al. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. J. Cell Mol. Med. 19(9), 2273–2285 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Yamamoto, T. et al. Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim. Biophys. Acta 1810(9), 853–862 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Hwangbo, C. et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin’s glucose-lowering effects. Sci. Transl. Med. 9(407), eaad 4000 (2017).


    Google Scholar
     

  • 59.

    El-Shehaby, A. M. et al. Apelin: a potential link between inflammation and cardiovascular disease in end stage renal disease patients. Scand. J. Clin. Lab. Invest. 70(6), 421–427 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Bo, Y. & Yuan, L. P. Glomerular expression of apelin and its association with proteinuria. Indian J. Pediatr. 79(8), 1028–1032 (2012).

    PubMed 

    Google Scholar
     

  • 61.

    Chen, H. et al. Apelin protects against acute renal injury by inhibiting TGF-β1. Biochim. Biophys. Acta 1852(7), 1278–1287 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Małyszko, J. et al. Apelin and cardiac function in hemodialyzed patients: possible relations?. Am. J .Nephrol. 26(2), 121–126 (2006).

    PubMed 

    Google Scholar
     

  • 63.

    Lu, Y. et al. Apelin-APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids 43(5), 2125–2136 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Dean, R. A. et al. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112(8), 3455–3464 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Rao, V. H. et al. Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am. J. Pathol. 169(1), 32–46 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Abraham, A. P. et al. Matrix metalloproteinase-12 deficiency attenuates experimental crescentic anti-glomerular basement membrane glomerulonephritis. Nephrology (Carlton) 23(2), 183–189 (2018).

    CAS 

    Google Scholar
     

  • 67.

    Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7(12), 684–696 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012).

    CAS 

    Google Scholar
     

  • 69.

    Kang, J. J. et al. Quantitative imaging of basic functions in renal (patho)physiology. Am. J. Physiol. Renal Physiol. 291(2), F495-502 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1), D766–D773 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013).

    CAS 

    Google Scholar
     

  • 72.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23(2), 257–258 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Ono, K. et al. CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful API. F1000Res. 5(4), 478 (2015).


    Google Scholar
     

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: