Home Nephro Research Immunopathophysiology of trauma-related acute kidney injury

Immunopathophysiology of trauma-related acute kidney injury

Credits to the Source Link Obum
Immunopathophysiology of trauma-related acute kidney injury
  • 1.

    Cole, E. et al. A decade of damage control resuscitation: new transfusion practice, new survivors, new directions. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003657 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 2.

    World Health Organization. Injuries and Violence: the Facts. https://www.who.int/violence_injury_prevention/key_facts/en/ (WHO, 2010).

  • 3.

    Harrois, A. et al. Prevalence and risk factors for acute kidney injury among trauma patients: a multicenter cohort study. Crit. Care 22, 344 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Haines, R. W., Fowler, A. J., Kirwan, C. J. & Prowle, J. R. The incidence and associations of acute kidney injury in trauma patients admitted to critical care: a systematic review and meta-analysis. J. Trauma. Acute Care Surg. 86, 141–147 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Søvik, S. et al. Acute kidney injury in trauma patients admitted to the ICU: a systematic review and meta-analysis. Intensive Care Med. 45, 407–419 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    The TraumaRegister DGU. et al. Trauma-induced coagulopathy upon emergency room arrival: still a significant problem despite increased awareness and management? Eur. J. Trauma. Emerg. Surg. 45, 115–124 (2019).

    Article 

    Google Scholar
     

  • 7.

    Kim, S.-M. et al. Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury. Front. Immunol. 9, 2563 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Huber-Lang, M., Lambris, J. D. & Ward, P. A. Innate immune responses to trauma. Nat. Immunol. 19, 327–341 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    O’Connor, M. E., Kirwan, C. J., Pearse, R. M. & Prowle, J. R. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med. 42, 521–530 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Grams, M. E. & Rabb, H. The distant organ effects of acute kidney injury. Kidney Int. 81, 942–948 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Yap, S. C. & Lee, H. T. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology 116, 1139–1148 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 12.

    James, M. T., Bhatt, M., Pannu, N. & Tonelli, M. Long-term outcomes of acute kidney injury and strategies for improved care. Nat. Rev. Nephrol. 16, 193–205 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Simmons, M. N., Schreiber, M. J. & Gill, I. S. Surgical renal ischemia: a contemporary overview. J. Urol. 180, 19–30 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Gaibi, T. & Ghatak-Roy, A. Approach to acute kidney injuries in the emergency department. Emerg. Med. Clin. North Am. 37, 661–677 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 15.

    American College of Surgeons & Committee on Trauma. Advanced Trauma Life Support: Student Course Manual (American College of Surgeons, 2018).

  • 16.

    Kuiper, J. W., Groeneveld, A. B. J., Slutsky, A. S. & Plötz, F. B. Mechanical ventilation and acute renal failure. Crit. Care Med. 33, 1408–1415 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Harrois, A., Libert, N. & Duranteau, J. Acute kidney injury in trauma patients. Curr. Opin. Crit. Care 23, 447–456 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Semler, M. W. et al. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 378, 829–839 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Cannon, J. W. et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J. Trauma. Acute Care Surg. 82, 605–617 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Cotton, B. A., Guy, J. S., Morris, J. A. & Abumrad, N. N. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock 26, 115–121 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Zarychanski, R. et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309, 678 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Moeller, C. et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J. Crit. Care 35, 75–83 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Meißner, A. & Schlenke, P. Massive bleeding and massive transfusion. Transfus. Med. Hemother 39, 73–84 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Spahn, D. R. et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit. Care 23, 98 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Goodnough, L. T., Levy, J. H. & Murphy, M. F. Concepts of blood transfusion in adults. Lancet 381, 1845–1854 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Van Avondt, K., Nur, E. & Zeerleder, S. Mechanisms of haemolysis-induced kidney injury. Nat. Rev. Nephrol. 15, 671–692 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 28.

    Okubo, K. et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 24, 232–238 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Wang, L. et al. Labile heme aggravates renal inflammation and complement activation after ischemia reperfusion injury. Front. Immunol. 10, 2975 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Ahuja, S. et al. Associations of intraoperative radial arterial systolic, diastolic, mean, and pulse pressures with myocardial and acute kidney injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology 132, 291–306 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Bellomo, R. & Giantomasso, D. D. Noradrenaline and the kidney: friends or foes? Crit. Care 5, 294–298 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Fähling, M., Seeliger, E., Patzak, A. & Persson, P. B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol. 13, 169–180 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Windpessl, M. & Kronbichler, A. Contrast-associated acute kidney injury (CA-AKI) in children: special considerations. Child. Kidney Dis. 23, 77–85 (2019).

    Article 

    Google Scholar
     

  • 34.

    Bihorac, A. et al. Incidence, clinical predictors, genomics, and outcome of acute kidney injury among trauma patients. Ann. Surg. 252, 158–165 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Perkins, Z. B. et al. Trauma induced acute kidney injury. PLoS ONE 14, e0211001 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Kellum, J. A. Why are patients still getting and dying from acute kidney injury? Curr. Opin. Crit. Care 22, 513–519 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Kellum, J. A. & Lameire, N., KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care 17, 204 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Kellum, J. A. & Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 14, 217–230 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Xu, K. et al. Unique transcriptional programs identify subtypes of AKI. J. Am. Soc. Nephrol. 28, 1729–1740 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Stafford-Smith, M. et al. Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci. Kidney Int. 88, 823–832 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Vilander, L. M., Kaunisto, M. A., Vaara, S. T. & Pettilä, V. & FINNAKI study group. Genetic variants in SERPINA4 and SERPINA5, but not BCL2 and SIK3 are associated with acute kidney injury in critically ill patients with septic shock. Crit. Care 21, 47 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    Fatani, S. H. et al. Assessment of tumor necrosis factor alpha polymorphism TNF-α-238 (rs 361525) as a risk factor for development of acute kidney injury in critically ill patients. Mol. Biol. Rep. 45, 839–847 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Vincent, J.-L. & De Backer, D. Circulatory shock. N. Engl. J. Med. 369, 1726–1734 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Mizock, B. A. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best. Pract. Res. Clin. Endocrinol. Metab. 15, 533–551 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Cuthbertson, D. Post-shock metabolic response. Lancet 239, 433–437 (1942).

    Article 

    Google Scholar
     

  • 46.

    Ganster, F. et al. Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats. Crit. Care 14, R165 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Sun, K. & Xia, H. Serum levels of NLRP3 and HMGB-1 are associated with the prognosis of patients with severe blunt abdominal trauma. Clinics 74, e729 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Cohen, M. J. et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit. Care 13, R174 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Cheng, Z. et al. Circulating histones are major mediators of multiple organ dysfunction syndrome in acute critical illnesses. Crit. Care Med. 47, e677–e684 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 50.

    Kutcher, M. E. et al. Extracellular histone release in response to traumatic injury: Implications for a compensatory role of activated protein C. J. Trauma. Acute Care Surg. 73, 1389–1394 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 51.

    Opal, S. M. et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J. Infect. Dis. 180, 1584–1589 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Charpentier, C. et al. Is endotoxin and cytokine release related to a decrease in gastric intramucosal pH after hemorrhagic shock? Intensive Care Med. 23, 1040–1048 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Pfeiffer, L. et al. Endotoxinemia and multiple organ failure after polytrauma. Anaesthesiol. Reanim. 21, 91–96 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Attanà, P. et al. Endotoxin role in cardiogenic shock: a brief report. Int. J. Cardiol. 167, 3031–3032 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • 55.

    van Poelgeest, E. P. et al. Characterization of immune cell, endothelial, and renal responses upon experimental human endotoxemia. J. Pharmacol. Toxicol. Methods 89, 39–46 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 56.

    Gentile, L. F. et al. Is there value in plasma cytokine measurements in patients with severe trauma and sepsis? Methods 61, 3–9 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Halbgebauer, R. et al. Hemorrhagic shock drives glycocalyx, barrier and organ dysfunction early after polytrauma. J. Crit. Care 44, 229–237 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 58.

    van Diepen, S. et al. Temporal changes in biomarkers and their relationships to reperfusion and to clinical outcomes among patients with ST segment elevation myocardial infarction. J. Thromb. Thrombolysis 42, 376–385 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 59.

    Williams, L. R. & Leggett, R. W. Reference values for resting blood flow to organs of man. Clin. Phys. Physiol. Meas. 10, 187–217 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 60.

    O’Connor, P. M. Renal oxygen delivery: matching delivery to metabolic demand. Clin. Exp. Pharmacol. Physiol. 33, 961–967 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 61.

    Cupples, W. A. Interactions contributing to kidney blood flow autoregulation. Curr. Opin. Nephrol. Hypertens. 16, 39–45 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • 62.

    Ricksten, S.-E., Bragadottir, G. & Redfors, B. Renal oxygenation in clinical acute kidney injury. Crit. Care 17, 221 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 63.

    Redfors, B., Bragadottir, G., Sellgren, J., Swärd, K. & Ricksten, S.-E. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 37, 60–67 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Bragadottir, G., Redfors, B., Nygren, A., Sellgren, J. & Ricksten, S.-E. Low-dose vasopressin increases glomerular filtration rate, but impairs renal oxygenation in post-cardiac surgery patients. Acta Anaesthesiol. Scand. 53, 1052–1059 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Legrand, M. & Payen, D. Understanding urine output in critically ill patients. Ann. Intensive Care 1, 13 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Hartmann, C. et al. Effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. Crit. Care Med. 45, e1270–e1279 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Riddez, L. et al. Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Crit. Care Med. 25, 635–640 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 68.

    Saotome, T., Ishikawa, K., May, C. N., Birchall, I. E. & Bellomo, R. The impact of experimental hypoperfusion on subsequent kidney function. Intensive Care Med. 36, 533–540 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 69.

    Nelimarkka, O., Halkola, L. & Niinikoski, J. Renal hypoxia and lactate metabolism in hemorrhagic shock in dogs. Crit. Care Med. 12, 656–660 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Zarbock, A., Koyner, J. L., Hoste, E. A. J. & Kellum, J. A. Update on perioperative acute kidney injury. Anesth. Analg. 127, 1236–1245 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 71.

    Villa, G., Samoni, S., De Rosa, S. & Ronco, C. The pathophysiological hypothesis of kidney damage during intra-abdominal hypertension. Front. Physiol. 7, 55 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 72.

    Dalfino, L., Tullo, L., Donadio, I., Malcangi, V. & Brienza, N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 34, 707–713 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • 73.

    Calzavacca, P., Evans, R. G., Bailey, M., Bellomo, R. & May, C. N. Variable responses of regional renal oxygenation and perfusion to vasoactive agents in awake sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R1226–R1233 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 74.

    Stumvoll, M., Meyer, C., Mitrakou, A., Nadkarni, V. & Gerich, J. E. Renal glucose production and utilization: new aspects in humans. Diabetologia 40, 749–757 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 75.

    Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 76.

    Aswani, A. et al. Scavenging circulating mitochondrial DNA as a potential therapeutic option for multiple organ dysfunction in trauma hemorrhage. Front. Immunol. 9, 891 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 77.

    Jansen, M. P. B., Florquin, S. & Roelofs, J. J. T. H. The role of platelets in acute kidney injury. Nat. Rev. Nephrol. 14, 457–471 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 78.

    Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 79.

    Kanse, S. M. et al. Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J. Immunol. 188, 2858–2865 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 80.

    Burk, A.-M. et al. Early complementopathy after multiple injuries in humans. Shock 37, 348–354 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 81.

    Bihorac, A. et al. Acute kidney injury is associated with early cytokine changes after trauma. J. Trauma Acute Care Surg. 74, 1005–1013 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 82.

    Frith, D. et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J. Thromb. Haemost. 8, 1919–1925 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 83.

    Vulliamy, P. et al. Histone H4 induces platelet ballooning and microparticle release during trauma hemorrhage. Proc. Natl Acad. Sci. USA 116, 17444–17449 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 84.

    Denk, S. et al. Role of hemorrhagic shock in experimental polytrauma. Shock 49, 154–163 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 85.

    Singbartl, K., Green, S. A. & Ley, K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 14, 48–54 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 86.

    Yamasowa, H., Shimizu, S., Inoue, T., Takaoka, M. & Matsumura, Y. Endothelial nitric oxide contributes to the renal protective effects of ischemic preconditioning. J. Pharmacol. Exp. Ther. 312, 153–159 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 87.

    Zhou, H.-L. et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565, 96–100 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 88.

    Hamill, R. W., Woolf, P. D., McDonald, J. V., Lee, L. A. & Kelly, M. Catecholamines predict outcome in traumatic brain injury. Ann. Neurol. 21, 438–443 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 89.

    Cernak, I., Savic, J., Ignjatovic, D. & Jevtic, M. Blast injury from explosive munitions. J. Trauma. 47, 96–103 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 90.

    Melton, S. M., Davis, K. A., Moomey, C. B., Fabian, T. C. & Proctor, K. G. Mediator-dependent secondary injury after unilateral blunt thoracic trauma. Shock 11, 396–402 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Moss, N. G., Vogel, P. A., Kopple, T. E. & Arendshorst, W. J. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion. Am. J. Physiol. Ren. Physiol. 305, F830–F838 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 92.

    Li, R. et al. Histone deacetylase inhibition and IκB kinase/nuclear factor-κB blockade ameliorate microvascular proinflammatory responses associated with hemorrhagic shock/resuscitation in mice. Crit. Care Med. 43, e567–e580 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 93.

    van Meurs, M. et al. Shock-induced stress induces loss of microvascular endothelial Tie2 in the kidney which is not associated with reduced glomerular barrier function. Am. J. Physiol. Ren. Physiol. 297, F272–F281 (2009).

    Article 
    CAS 

    Google Scholar
     

  • 94.

    Sheerin, N. S. et al. Synthesis of complement protein C3 in the kidney is an important mediator of local tissue injury. FASEB J. 22, 1065–1072 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 95.

    Ganter, M. T. et al. Role of the alternative pathway in the early complement activation following major trauma. Shock 28, 29–34 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 96.

    Wan, J.-X. et al. Complement 3 is involved in changing the phenotype of human glomerular mesangial cells. J. Cell. Physiol. 213, 495–501 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 97.

    Lovett, D. H., Haensch, G. M., Goppelt, M., Resch, K. & Gemsa, D. Activation of glomerular mesangial cells by the terminal membrane attack complex of complement. J. Immunol. 138, 2473–2480 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Torbohm, I. et al. C5b-8 and C5b-9 modulate the collagen release of human glomerular epithelial cells. Kidney Int. 37, 1098–1104 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 99.

    Huber-Lang, M. et al. Role of C5a in multiorgan failure during sepsis. J. Immunol. 166, 1193–1199 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 100.

    Chen, Y. et al. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis. BMC Nephrol. 20, 106 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 101.

    Caron, A., Desrosiers, R. R., Langlois, S. & Béliveau, R. Ischemia-reperfusion injury stimulates gelatinase expression and activity in kidney glomeruli. Can. J. Physiol. Pharmacol. 83, 287–300 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 102.

    De Gaudio, A. R., Spina, R., Di Filippo, A. & Feri, M. Glomerular permeability and trauma: a correlation between microalbuminuria and Injury Severity Score. Crit. Care Med. 27, 2105–2108 (1999).

    PubMed 
    Article 

    Google Scholar
     

  • 103.

    Agrawal, S., Guess, A. J., Chanley, M. A. & Smoyer, W. E. Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney Int. 86, 1150–1160 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 104.

    Bosch, X., Poch, E. & Grau, J. M. Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 361, 62–72 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 105.

    Blachar, Y., Fong, J. S., de Chadarévian, J. P. & Drummond, K. N. Muscle extract infusion in rabbits. A new experimental model of the crush syndrome. Circ. Res. 49, 114–124 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 106.

    Kitamura, M. & Fine, L. G. The concept of glomerular self-defense. Kidney Int. 55, 1639–1671 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 107.

    Racusen, L. C., Fivush, B. A., Li, Y. L., Slatnik, I. & Solez, K. Dissociation of tubular cell detachment and tubular cell death in clinical and experimental ‘acute tubular necrosis’. Lab. Invest. 64, 546–556 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Thadhani, R., Pascual, M. & Bonventre, J. V. Acute renal failure. N. Engl. J. Med. 334, 1448–1460 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 109.

    Thurman, J. M. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J. Clin. Invest. 116, 357–368 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 110.

    Zhou, W. et al. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J. Clin. Invest. 105, 1363–1371 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 111.

    Thurman, J. M., Lucia, M. S., Ljubanovic, D. & Holers, V. M. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 67, 524–530 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 112.

    Farrar, C. A. et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J. Clin. Invest. 126, 1911–1925 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 113.

    van der Pol, P. et al. Mannan-binding lectin mediates renal ischemia/reperfusion injury independent of complement activation. Am. J. Transpl. 12, 877–887 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 114.

    de Vries, B. et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. J. Immunol. 170, 3883–3889 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • 115.

    Peng, Q. et al. C3a and C5a promote renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 23, 1474–1485 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 116.

    Ehrnthaller, C. et al. Hemorrhagic shock induces renal complement activation. Eur. J. Trauma Emerg. Surg. https://doi.org/10.1007/s00068-019-01187-1 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 117.

    Singbartl, K. & Ley, K. Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin. Crit. Care Med. 28, 2507–2514 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 118.

    Ritis, K. et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 177, 4794–4802 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 119.

    Denk, S. et al. Complement C5a functions as a master switch for the pH balance in neutrophils exerting fundamental immunometabolic effects. J. Immunol. 198, 4846–4854 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 120.

    Peng, Q. et al. The C5a/C5aR1 axis promotes progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia/reperfusion injury. Kidney Int. 96, 117–128 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 121.

    Gupta, S. & Kaplan, M. J. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat. Rev. Nephrol. 12, 402–413 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 122.

    Salazar-Gonzalez, H., Zepeda-Hernandez, A., Melo, Z., Saavedra-Mayorga, D. E. & Echavarria, R. Neutrophil extracellular traps in the establishment and progression of renal diseases. Medicina 55, 431 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 123.

    Younan, D., Richman, J., Zaky, A. & Pittet, J.-F. An increasing neutrophil-to-lymphocyte ratio trajectory predicts organ failure in critically-ill male trauma patients. an exploratory study. Healthcare 7, 42 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 124.

    Awad, A. S. et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury. Kidney Int. 75, 689–698 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 125.

    Block, H. et al. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury. J. Exp. Med. 209, 407–421 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 126.

    Singbartl, K., Miller, L., Ruiz-Velasco, V. & Kellum, J. A. Reversal of acute kidney injury-induced neutrophil dysfunction: a critical role for resistin. Crit. Care Med. 44, e492–e501 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 127.

    Dong, X.-Q. et al. Resistin is associated with mortality in patients with traumatic brain injury. Crit. Care 14, R190 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 128.

    Singbartl, K., Formeck, C. L. & Kellum, J. A. Kidney-immune system crosstalk in AKI. Semin. Nephrol. 39, 96–106 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 129.

    Miller, L. et al. Resistin directly inhibits bacterial killing in neutrophils. Intensive Care Med. Exp. 7, 30 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 130.

    Dodd-o, J. M. et al. Interactive effects of mechanical ventilation and kidney health on lung function in an in vivo mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L3–L11 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 131.

    Jang, H. R. & Rabb, H. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11, 88–101 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 132.

    Nelson, P. J. et al. The renal mononuclear phagocytic system. J. Am. Soc. Nephrol. 23, 194–203 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 133.

    Kurts, C., Ginhoux, F. & Panzer, U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat. Rev. Nephrol. 16, 391–407 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 134.

    Tang, P. M.-K., Nikolic-Paterson, D. J. & Lan, H.-Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 135.

    De Greef, K. E. et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia. Kidney Int. 60, 1415–1427 (2001).

    PubMed 
    Article 

    Google Scholar
     

  • 136.

    Williams, T. M., Little, M. H. & Ricardo, S. D. Macrophages in renal development, injury, and repair. Semin. Nephrol. 30, 255–267 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 137.

    Li, L. et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 74, 1526–1537 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 138.

    Huen, S. C. & Cantley, L. G. Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr. Nephrol. 30, 199–209 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 139.

    Gueler, F. et al. Statins attenuate ischemia-reperfusion injury by inducing heme oxygenase-1 in infiltrating macrophages. Am. J. Pathol. 170, 1192–1199 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 140.

    Han, H. I., Skvarca, L. B., Espiritu, E. B., Davidson, A. J. & Hukriede, N. A. The role of macrophages during acute kidney injury: destruction and repair. Pediatr. Nephrol. 34, 561–569 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 141.

    Anders, H.-J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80, 915–925 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 142.

    Chiba, T. et al. Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J. Am. Soc. Nephrol. 27, 495–508 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 143.

    Chen, T., Cao, Q., Wang, Y. & Harris, D. C. H. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int. 95, 760–773 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 144.

    Susnik, N. et al. Ablation of proximal tubular suppressor of cytokine signaling 3 enhances tubular cell cycling and modifies macrophage phenotype during acute kidney injury. Kidney Int. 85, 1357–1368 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 145.

    Gunay, Y. et al. A novel mechanism of anti–T-lymphocyte globulin mediated by fractalkine in renal ischemia–reperfusion injury in rats. Transplant. Proc. 45, 2461–2468 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 146.

    Dai, H., Thomson, A. W. & Rogers, N. M. Dendritic cells as sensors, mediators, and regulators of ischemic injury. Front. Immunol. 10, 2418 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 147.

    Dong, X. et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int. 71, 619–628 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 148.

    Kurts, C., Panzer, U., Anders, H.-J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 149.

    Pons, M. et al. Mast cells and MCPT4 chymase promote renal impairment after partial ureteral obstruction. Front. Immunol. 8, 450 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 150.

    Tong, F., Luo, L. & Liu, D. Effect of intervention in mast cell function before reperfusion on renal ischemia-reperfusion injury in rats. Kidney Blood Press. Res. 41, 335–344 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 151.

    Danelli, L. et al. Early Phase mast cell activation determines the chronic outcome of renal ischemia–reperfusion injury. J. Immunol. 198, 2374–2382 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 152.

    Madjene, L. C. et al. Mast cell chymase protects against acute ischemic kidney injury by limiting neutrophil hyperactivation and recruitment. Kidney Int. 97, 516–527 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 153.

    Cameron, G. J. M. et al. Emerging therapeutic potential of group 2 innate lymphoid cells in acute kidney injury. J. Pathol. 248, 9–15 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 154.

    Cao, Q. et al. Potentiating tissue-resident type 2 innate lymphoid cells by IL-33 to prevent renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 29, 961–976 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Rabb, H. et al. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am. J. Physiol. Ren. Physiol. 279, F525–F531 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 156.

    Burne-Taney, M. J. et al. B cell deficiency confers protection from renal ischemia reperfusion injury. J. Immunol. 171, 3210–3215 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 157.

    Cantaluppi, V. et al. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol. Dial. Transplant. 29, 2004–2011 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 158.

    Kim, B. S. et al. Ischemia-repersfusion injury activates innate immunity in rat kidneys. Transplantation 79, 1370–1377 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • 159.

    Hoke, T. S. et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J. Am. Soc. Nephrol. 18, 155–164 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 160.

    Grigoryev, D. N. et al. The local and systemic inflammatory transcriptome after acute kidney injury. J. Am. Soc. Nephrol. 19, 547–558 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 161.

    Baek, J.-H. et al. IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J. Clin. Invest. 125, 3198–3214 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 162.

    Rosenberger, C. et al. Cellular responses to hypoxia after renal segmental infarction. Kidney Int. 64, 874–886 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • 163.

    Leelahavanichkul, A. et al. Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing high mobility group box protein-1. Kidney Int. 80, 1198–1211 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 164.

    Jansen, M. P. B. et al. Mitochondrial DNA is released in urine of SIRS patients with acute kidney injury and correlates with severity of renal dysfunction. Shock 49, 301–310 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 165.

    Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 166.

    Janak, J. C. et al. Urinary biomarkers are associated with severity and mechanism of injury. Shock 47, 593–598 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 167.

    Ichimura, T. et al. Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118, 1657–1668 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 168.

    Yang, L. et al. KIM-1–mediated phagocytosis reduces acute injury to the kidney. J. Clin. Invest. 125, 1620–1636 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 169.

    Schunk, S. J. et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet 394, 488–496 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 170.

    Jin, H. et al. Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 4, e125490 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 171.

    Joannidis, M. et al. Use of cell cycle arrest biomarkers in conjunction with classical markers of acute kidney injury. Crit. Care Med. 47, e820–e826 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 172.

    Humphreys, B. D. et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl Acad. Sci. USA 108, 9226–9231 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 173.

    Chen, Y.-T. et al. Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 174.

    Henriksen, H. H. et al. Metabolic systems analysis of shock-induced endotheliopathy (SHINE) in trauma: a new research paradigm. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003307 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 175.

    Johansson, P. I. et al. Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients. Ann. Surg. 265, 597–603 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 176.

    van Nieuw Amerongen, G. P., Musters, R. J. P., Eringa, E. C., Sipkema, P. & van Hinsbergh, V. W. M. Thrombin-induced endothelial barrier disruption in intact microvessels: role of RhoA/Rho kinase-myosin phosphatase axis. Am. J. Physiol. Cell Physiol. 294, C1234–C1241 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 177.

    Noiri, E. et al. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol. Ren. Physiol. 281, F948–F957 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 178.

    Noiri, E., Peresleni, T., Miller, F. & Goligorsky, M. S. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J. Clin. Invest. 97, 2377–2383 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 179.

    Ratliff, B. B., Rabadi, M. M., Vasko, R., Yasuda, K. & Goligorsky, M. S. Messengers without borders: mediators of systemic inflammatory response in AKI. J. Am. Soc. Nephrol. 24, 529–536 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 180.

    Schillemans, M., Karampini, E., Kat, M. & Bierings, R. Exocytosis of Weibel–Palade bodies: how to unpack a vascular emergency kit. J. Thromb. Haemost. 17, 6–18 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 181.

    Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 182.

    Yamamoto, T. et al. Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am. J. Physiol. Ren. Physiol. 282, F1150–F1155 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 183.

    Augustin, H. G., Young Koh, G., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 184.

    Trieu, M. et al. Vasculotide, an angiopoietin-1 mimetic, restores microcirculatory perfusion and microvascular leakage and decreases fluid resuscitation requirements in hemorrhagic shock. Anesthesiology 128, 361–374 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 185.

    Rübig, E. et al. The synthetic Tie2 agonist peptide vasculotide protects renal vascular barrier function in experimental acute kidney injury. Sci. Rep. 6, 22111 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 186.

    Jansen, M. P. B. et al. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 91, 352–364 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 187.

    Lu, C. Y., Winterberg, P. D., Chen, J. & Hartono, J. R. Acute kidney injury: a conspiracy of toll-like receptor 4 on endothelia, leukocytes, and tubules. Pediatr. Nephrol. 27, 1847–1854 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 188.

    Patel, N. S. A. et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J. Pharmacol. Exp. Ther. 312, 1170–1178 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 189.

    Johns, E. J., Kopp, U. C. & DiBona, G. F. Neural control of renal function. in Comprehensive Physiology (ed. Terjung, R.) c100043 (John Wiley & Sons, Inc., 2011).

  • 190.

    Fujii, T. et al. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. Eur. J. Pharmacol. 481, 241–248 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 191.

    Okusa, M. D., Rosin, D. L. & Tracey, K. J. Targeting neural reflex circuits in immunity to treat kidney disease. Nat. Rev. Nephrol. 13, 669–680 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 192.

    Levy, G. et al. Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock. Shock 39, 39–44 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 193.

    Hering, D. & Winklewski, P. J. R1 autonomic nervous system in acute kidney injury. Clin. Exp. Pharmacol. Physiol. 44, 162–171 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 194.

    Inoue, T. et al. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney Int. 95, 563–576 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 195.

    Brorsson, C. et al. Adrenal response after trauma is affected by time after trauma and sedative/analgesic drugs. Injury 45, 1149–1155 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 196.

    Offner, P. J., Moore, E. E. & Ciesla, D. The adrenal response after severe trauma. Am. J. Surg. 184, 649–653 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 197.

    Zager, R. A. & Johnson, A. C. M. Acute kidney injury induces dramatic p21 upregulation via a novel, glucocorticoid-activated, pathway. Am. J. Physiol. Ren. Physiol. 316, F674–F681 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 198.

    Baban, B. et al. Glucocorticoid-induced leucine zipper promotes neutrophil and T-cell polarization with protective effects in acute kidney injury. J. Pharmacol. Exp. Ther. 367, 483–493 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 199.

    DiBona, G. F. Physiology in perspective: the wisdom of the body. neural control of the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R633–R641 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 200.

    Faubel, S. & Edelstein, C. L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol. 12, 48–60 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 201.

    Freeman, W. D. & Wadei, H. M. A brain–kidney connection: the delicate interplay of brain and kidney physiology. Neurocrit. Care 22, 173–175 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 202.

    Nongnuch, A., Panorchan, K. & Davenport, A. Brain–kidney crosstalk. Crit. Care 18, 225 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 203.

    Maesaka, J. K., Imbriano, L. J., Ali, N. M. & Ilamathi, E. Is it cerebral or renal salt wasting? Kidney Int. 76, 934–938 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • 204.

    Tanaka, S. & Okusa, M. D. Crosstalk between the nervous system and the kidney. Kidney Int. 97, 466–476 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 205.

    Liu, M. et al. Acute kidney injury leads to inflammation and functional changes in the brain. J. Am. Soc. Nephrol. 19, 1360–1370 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 206.

    Kelly, K. J. Distant effects of experimental renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 14, 1549–1558 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 207.

    Prud’homme, M. et al. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci. 4, 717–732 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 208.

    Hassoun, H. T. et al. Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis. Am. J. Physiol. Renal Physiol. 297, F125–F137 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 209.

    Kramer, A. A. et al. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int. 55, 2362–2367 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 210.

    Rabb, H. et al. Acute renal failure leads to dysregulation of lung salt and water channels. Kidney Int. 63, 600–606 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 211.

    Klein, C. L. et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int. 74, 901–909 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 212.

    Doi, K. et al. The high-mobility group protein B1–Toll-like receptor 4 pathway contributes to the acute lung injury induced by bilateral nephrectomy. Kidney Int. 86, 316–326 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 213.

    Rossi, M. et al. HO-1 mitigates acute kidney injury and subsequent kidney-lung cross-talk. Free. Radic. Res. 53, 1035–1043 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 214.

    Husain-Syed, F., Slutsky, A. S. & Ronco, C. Lung-kidney cross-talk in the critically Ill patient. Am. J. Respir. Crit. Care Med. 194, 402–414 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 215.

    Vivino, G. et al. Risk factors for acute renal failure in trauma patients. Intensive Care Med. 24, 808–814 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 216.

    Raimundo, M. et al. Low systemic oxygen delivery and BP and Risk of progression of early AKI. Clin. J. Am. Soc. Nephrol. 10, 1340–1349 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 217.

    Gosling, P., Sanghera, K. & Dickson, G. Generalized vascular permeability and pulmonary function in patients following serious trauma. J. Trauma. 36, 477–481 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 218.

    Park, S. W. et al. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab. Invest. 91, 63–84 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 219.

    Golab, F. et al. Ischemic and non-ischemic acute kidney injury cause hepatic damage. Kidney Int. 75, 783–792 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 220.

    Kim, M., Park, S. W., Kim, M., D’Agati, V. D. & Lee, H. T. Isoflurane activates intestinal sphingosine kinase to protect against renal ischemia-reperfusion-induced liver and intestine injury. Anesthesiology 114, 363–373 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 221.

    Gurley, B. J. et al. Extrahepatic ischemia-reperfusion injury reduces hepatic oxidative drug metabolism as determined by serial antipyrine clearance. Pharm. Res. 14, 67–72 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 222.

    Lane, K., Dixon, J. J., MacPhee, I. A. M. & Philips, B. J. Renohepatic crosstalk: does acute kidney injury cause liver dysfunction? Nephrol. Dial. Transplant. 28, 1634–1647 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • 223.

    Hassoun, H. T. et al. Post-injury multiple organ failure: the role of the gut. Shock 15, 1–10 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 224.

    Mittal, R. & Coopersmith, C. M. Redefining the gut as the motor of critical illness. Trends Mol. Med. 20, 214–223 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 225.

    Vaziri, N. D. et al. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol. Dial. Transpl. 27, 2686–2693 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 226.

    Yang, T., Richards, E. M., Pepine, C. J. & Raizada, M. K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 14, 442–456 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 227.

    Niwa, T. & Ise, M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 124, 96–104 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 228.

    Wang, W. et al. Serum indoxyl sulfate is associated with mortality in hospital-acquired acute kidney injury: a prospective cohort study. BMC Nephrol. 20, 57 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 229.

    Nakade, Y. et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 3, e97957 (2018).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 230.

    Andrade-Oliveira, V. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 231.

    Al-Harbi, N. O. et al. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int. Immunopharmacol. 58, 24–31 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 232.

    Park, J., Goergen, C. J., HogenEsch, H. & Kim, C. H. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis. J. Immunol. 196, 2388–2400 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 233.

    Gigliotti, J. C. & Okusa, M. D. The spleen: the forgotten organ in acute kidney injury of critical illness. Nephron Clin. Pract. 127, 153–157 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 234.

    Andrés-Hernando, A. et al. Splenectomy exacerbates lung injury after ischemic acute kidney injury in mice. Am. J. Physiol. Renal Physiol. 301, F907–F916 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 235.

    Jiang, H. et al. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery 141, 32–40 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • 236.

    Inoue, T., Tanaka, S. & Okusa, M. D. Neuroimmune interactions in inflammation and acute kidney injury. Front. Immunol. 8, 945 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 237.

    Inoue, T. et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J. Clin. Invest. 126, 1939–1952 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 238.

    Demetriades, D. et al. Blunt splenic trauma: splenectomy increases early infectious complications. J. Trauma Acute Care Surg. 72, 229–234 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 239.

    Watters, J. M. et al. Splenectomy leads to a persistent hypercoagulable state after trauma. Am. J. Surg. 199, 646–651 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 240.

    Wei, K., Yin, Z. & Xie, Y. Roles of the kidney in the formation, remodeling and repair of bone. J. Nephrol. 29, 349–357 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 241.

    Porter, C. J. et al. Acute and chronic kidney disease in elderly patients with hip fracture: prevalence, risk factors and outcome with development and validation of a risk prediction model for acute kidney injury. BMC Nephrol. 18, 20 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 242.

    Ulucay, C. et al. Risk factors for acute kidney injury after hip fracture surgery in the elderly individuals. Geriatr. Orthop. Surg. Rehabil. 3, 150–156 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 243.

    Marty, P. et al. The Doppler renal resistive index for early detection of acute kidney injury after hip fracture. Anaesth. Crit. Care Pain. Med. 35, 377–382 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 244.

    Tiansheng, S. et al. Is damage control orthopedics essential for the management of bilateral femoral fractures associated or complicated with shock? An animal study. J. Trauma. 67, 1402–1411 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • 245.

    Sangkomkamhang, T., Thinkhamrop, W., Thinkhamrop, B. & Laohasiriwong, W. Incidence and risk factors for complications after definitive skeletal fixation of lower extremity in multiple injury patients: a retrospective chart review. F1000Res 7, 612 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 246.

    Goldstein, S. L., Jaber, B. L., Faubel, S., Chawla, L. S. & for the Acute Kidney Injury Advisory Group of the American Society of Nephrology. AKI transition of care: a potential opportunity to detect and prevent CKD. Clin. J. Am. Soc. Nephrol. 8, 476–483 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 247.

    Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 69, 1945–1953 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 248.

    Livingston, D. H. et al. Bone marrow failure following severe injury in humans. Ann. Surg. 238, 748–753 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 249.

    Chen, D., Xiao, D., Guo, J., Chahan, B. & Wang, Z. Neutrophil-lymphocyte count ratio as a diagnostic marker for acute kidney injury: a systematic review and meta-analysis. Clin. Exp. Nephrol. 24, 126–135 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 250.

    Kim, W. H., Park, J. Y., Ok, S.-H., Shin, I.-W. & Sohn, J.-T. Association between the neutrophil/lymphocyte ratio and acute kidney injury after cardiovascular surgery: a retrospective observational study. Medicine 94, e1867 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 251.

    Ito, S. et al. Neutrophil/lymphocyte ratio elevation in renal dysfunction is caused by distortion of leukocyte hematopoiesis in bone marrow. Ren. Fail. 41, 284–293 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 252.

    Goldstein, S. L. & Chawla, L. S. Renal angina. Clin. J. Am. Soc. Nephrol. 5, 943–949 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 253.

    Weiss, R., Meersch, M., Pavenstädt, H.-J. & Zarbock, A. Acute kidney injury. Dtsch. Arztebl. Int. 116, 833–842 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 254.

    Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 255.

    Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189–200 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 256.

    Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H. & Kellum, J. A. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 96, 1083–1099 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 257.

    Coccolini, F. et al. Kidney and uro-trauma: WSES-AAST guidelines. World J. Emerg. Surg. 14, 54 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: