Home Chronic Kidney Disease Nephrotoxic Chemotherapy Agents: Old and New

Nephrotoxic Chemotherapy Agents: Old and New

Credits to the Source Link Obum
Nephrotoxic Chemotherapy Agents: Old and New
    • Kitchlu A.
    • McArthur E.
    • Amir E.
    • et al.

    Acute kidney injury in patients receiving systemic treatment for cancer: a population-based cohort study.

    J Natl Cancer Inst. 2019; 111: 727-736

    • Glezerman I.
    • Kris M.G.
    • Miller V.
    • Seshan S.
    • Flombaum C.D.

    Gemcitabine nephrotoxicity and hemolytic uremic syndrome: report of 29 cases from a single institution.

    Clin Nephrol. 2009; 71: 130-139

    • Izzedine H.
    • Isnard-Bagnis C.
    • Launay-Vacher V.
    • et al.

    Gemcitabine-induced thrombotic microangiopathy: a systematic review.

    Nephrol Dial Transplant. 2006; 21: 3038-3045

    • Fung M.C.
    • Storniolo A.M.
    • Nguyen B.
    • Arning M.
    • Brookfield W.
    • Vigil J.

    A review of hemolytic uremic syndrome in patients treated with gemcitabine therapy.

    Cancer. 1999; 85: 2023-2032

  • Onco-nephrology: renal toxicities of chemotherapeutic agents.

    Clin J Am Soc Nephrol. 2012; 7: 1713-1721

  • Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.

    Kidney Int. 2008; 73: 994-1007

  • Cisplatin nephrotoxicity.

    Semin Nephrol. 2003; 23: 460-464

    • Miller R.P.
    • Tadagavadi R.K.
    • Ramesh G.
    • Reeves W.B.

    Mechanisms of Cisplatin nephrotoxicity.

    Toxins. 2010; 2: 2490-2518

    • Volarevic V.
    • Djokovic B.
    • Jankovic M.G.
    • et al.

    Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity.

    J Biomed Sci. 2019; 26: 25

    • Kumar G.
    • Solanki M.H.
    • Xue X.
    • et al.

    Magnesium improves cisplatin-mediated tumor killing while protecting against cisplatin-induced nephrotoxicity.

    Am J Physiol Renal Physiol. 2017; 313: F339-F350

    • Solanki M.H.
    • Chatterjee P.K.
    • Gupta M.
    • et al.

    Magnesium protects against cisplatin-induced acute kidney injury by regulating platinum accumulation.

    Am J Physiol Renal Physiol. 2014; 307: F369-F384

    • Motwani S.S.
    • McMahon G.M.
    • Humphreys B.D.
    • Partridge A.H.
    • Waikar S.S.
    • Curhan G.C.

    Development and validation of a risk prediction model for acute kidney injury after the first course of cisplatin.

    J Clin Oncol. 2018; 36: 682-688

    • Ciarimboli G.
    • Holle S.K.
    • Vollenbröcker B.
    • et al.

    New clues for nephrotoxicity induced by ifosfamide: preferential renal uptake via the human organic cation transporter 2.

    Mol Pharm. 2011; 8: 270-279

    • Dechant K.L.
    • Brogden R.N.
    • Pilkington T.
    • Faulds D.

    Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer.

    Drugs. 1991; 42: 428-467

  • Nephrol Ther. 2018; 14: S125-S131
    • Mhaidat N.M.
    • Ali R.M.
    • Shotar A.M.
    • Alkaraki A.K.

    Antioxidant activity of simvastatin prevents ifosfamide-induced nephrotoxicity.

    Pak J Pharm Sci. 2016; 29: 433-437

  • Bull Cancer. 2015; 102: 190-197
    • Glezerman I.G.
    • Pietanza M.C.
    • Miller V.
    • Seshan S.V.

    Kidney tubular toxicity of maintenance pemetrexed therapy.

    Am J Kidney Dis. 2011; 58: 817-820

    • van den Bogaert D.P.
    • Pouw E.M.
    • van Wijhe G.
    • et al.

    Pemetrexed maintenance therapy in patients with malignant pleural mesothelioma.

    J Thorac Oncol. 2006; 1: 25-30

    • Ciuleanu T.
    • Brodowicz T.
    • Zielinski C.
    • et al.

    Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study.

    Lancet. 2009; 374: 1432-1440

    • Yarlagadda S.G.
    • Perazella M.A.

    Drug-induced crystal nephropathy: an update.

    Expert Opin Drug Saf. 2008; 7: 147-158

    • Wiczer T.
    • Dotson E.
    • Tuten A.
    • Phillips G.
    • Maddocks K.

    Evaluation of incidence and risk factors for high-dose methotrexate-induced nephrotoxicity.

    J Oncol Pharm Pract. 2016; 22: 430-436

  • Glucarpidase for methotrexate nephrotoxicity: another string to our bow.

    Intern Med J. 2017; 47: 1327

    • Gurevich F.
    • Perazella M.A.

    Renal effects of anti-angiogenesis therapy: update for the internist.

    Am J Med. 2009; 122: 322-328

    • Kong D.-H.
    • Kim M.R.
    • Jang J.H.
    • Na H.J.
    • Lee S.

    A review of anti-angiogenic targets for monoclonal antibody cancer therapy.

    Int J Mol Sci. 2017; 18: 1786

    • Izzedine H.
    • Massard C.
    • Spano J.P.
    • Goldwasser F.
    • Khayat D.
    • Soria J.C.

    VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management.

    Eur J Cancer. 2010; 46: 439-448

    • Eremina V.
    • Jefferson J.A.
    • Kowalewska J.
    • et al.

    VEGF inhibition and renal thrombotic microangiopathy.

    N Engl J Med. 2008; 358: 1129-1136

    • Zhu X.
    • Wu S.
    • Dahut W.L.
    • Parikh C.R.

    Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis.

    Am J Kidney Dis. 2007; 49: 186-193

    • den Deurwaarder E.S.
    • Desar I.M.
    • Steenbergen E.J.
    • Mulders P.F.
    • Wetzels J.F.
    • van Herpen C.M.

    Kidney injury during VEGF inhibitor therapy.

    Neth J Med. 2012; 70: 267-271

    • Portuguese A.J.
    • Gleber C.
    • Passero Jr., F.C.
    • Lipe B.

    A review of thrombotic microangiopathies in multiple myeloma.

    Leuk Res. 2019; 85: 106195

    • Yui J.C.
    • Van Keer J.
    • Weiss B.M.
    • et al.

    Proteasome inhibitor associated thrombotic microangiopathy.

    Am J Hematol. 2016; 91: E348-E352

    • Mehta N.
    • Saxena A.
    • Niesvizky R.

    Bortezomib-induced thrombotic thrombocytopaenic purpura.

    BMJ Case Rep. 2012; 2012

    • Chen Y.
    • Ooi M.
    • Lim S.F.
    • et al.

    Thrombotic microangiopathy during carfilzomib use: case series in Singapore.

    Blood Cancer J. 2016; 6: e450

    • Wang M.L.
    • Rule S.
    • Martin P.
    • et al.

    Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma.

    N Engl J Med. 2013; 369: 507-516

    • Gashonia L.M.
    • Carver J.R.
    • O’Quinn R.
    • et al.

    Persistence of ibrutinib-associated hypertension in CLL pts treated in a real-world experience.

    J Clin Oncol. 2017; 35: 7525

    • Brown J.R.
    • Hillmen P.
    • O’Brien S.
    • et al.

    Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL.

    Leukemia. 2018; 32: 83-91

    • Kaur V.
    • Mehta P.
    • Johnsurd J.
    • Govindarajan R.

    Ibrutinib-associated tumor lysis syndrome in a patient with chronic lymphocytic leukemia.

    Blood. 2014; 124: 3503-3505

    • Manohar S.
    • Bansal A.
    • Wanchoo R.
    • Sakhiya V.
    • Lucia S.
    • Jhaveri K.D.

    Ibrutinib induced acute tubular injury: a case series and review of the literature [published online ahead of print May 31, 2019].

    Am J Hematol. 2019; https://doi.org/10.1002/ajh.25546

  • Nephrotoxicity of recent anti-cancer agents.

    Clin Kidney J. 2014; 7: 11-22

    • Motzer R.J.
    • Escudier B.
    • Oudard S.
    • et al.

    Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.

    Lancet. 2008; 372: 449-456

    • Abbas A.
    • Mirza M.M.
    • Ganti A.K.
    • Tendulkar K.

    Renal toxicities of targeted therapies.

    Targeted Oncol. 2015; 10: 487-499

    • Kaplan B.
    • Qazi Y.
    • Wellen J.R.

    Strategies for the management of adverse events associated with mTOR inhibitors.

    Transplant Rev. 2014; 28: 126-133

    • Letavernier E.
    • Bruneval P.
    • Vandermeersch S.
    • et al.

    Sirolimus interacts with pathways essential for podocyte integrity.

    Nephrol Dial Transplant. 2008; 24: 630-638

    • Oroszlan M.
    • Bieri M.
    • Ligeti N.
    • et al.

    Sirolimus and everolimus reduce albumin endocytosis in proximal tubule cells via an angiotensin II-dependent pathway.

    Transpl Immunol. 2010; 23: 125-132

    • Cinà D.P.
    • Onay T.
    • Paltoo A.
    • et al.

    Inhibition of MTOR disrupts autophagic flux in podocytes.

    J Am Soc Nephrol. 2012; 23: 412-420

    • Kwitkowski V.E.
    • Prowell T.M.
    • Ibrahim A.
    • et al.

    FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma.

    Oncologist. 2010; 15: 428-435

    • Gerullis H.
    • Bergmann L.
    • Maute L.
    • Eimer C.
    • Otto T.

    Experiences and practical conclusions concerning temsirolimus use and adverse event management in advanced renal cell carcinoma within a compassionate use program in Germany.

    Cancer Chemother Pharmacol. 2009; 63: 1097-1102

    • Marcolino M.S.
    • Boersma E.
    • Clementino N.C.
    • et al.

    Imatinib treatment duration is related to decreased estimated glomerular filtration rate in chronic myeloid leukemia patients.

    Ann Oncol. 2011; 22: 2073-2079

    • Pou M.
    • Saval N.
    • Vera M.
    • et al.

    Acute renal failure secondary to imatinib mesylate treatment in chronic myeloid leukemia.

    Leuk Lymphoma. 2003; 44: 1239-1241

    • Foringer J.R.
    • Verani R.R.
    • Tija V.M.
    • Finkel K.W.
    • Samuels J.A.
    • Guntupalli J.S.

    Acute renal failure secondary to imatinib mesylate treatment in prostate cancer.

    Ann Pharmacother. 2005; 39: 2136-2138

    • Gafter-Gvili A.
    • Ram R.
    • Gafter U.
    • Shpilberg O.
    • Raanani P.

    Renal failure associated with tyrosine kinase inhibitors–case report and review of the literature.

    Leuk Res. 2010; 34: 123-127

    • Demetri G.D.
    • Lo Russo P.
    • MacPherson I.R.
    • et al.

    Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors.

    Clin Cancer Res. 2009; 15: 6232-6240

    • Wallace E.
    • Lyndon W.
    • Chumley P.
    • Jaimes E.A.
    • Fatima H.

    Dasatinib-induced nephrotic-range proteinuria.

    Am J Kidney Dis. 2013; 61: 1026-1031

    • Calizo R.C.
    • Bhattacharya S.
    • Van Hasselt J.G.C.
    • et al.

    Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity.

    Nature Comm. 2019; 10: 2061

    • Uthurriague C.
    • Thellier S.
    • Ribes D.
    • Rostaing L.
    • Paul C.
    • Meyer N.

    Vemurafenib significantly decreases glomerular filtration rate.

    J Eur Acad Dermatol Venereol. 2014; 28: 978-979

    • Launay-Vacher V.
    • Zimner-Rapuch S.
    • Poulalhon N.
    • et al.

    Acute renal failure associated with the new BRAF inhibitor vemurafenib: a case series of 8 patients.

    Cancer. 2014; 120: 2158-2163

    • Teuma C.
    • Perier-Muzet M.
    • Pelletier S.
    • et al.

    New insights into renal toxicity of the B-RAF inhibitor, vemurafenib, in patients with metastatic melanoma.

    Cancer Chemother Pharmacol. 2016; 78: 419-426

    • Jhaveri K.D.
    • Sakhiya V.
    • Fishbane S.

    Nephrotoxicity of the BRAF inhibitors vemurafenib and dabrafenib.

    JAMA Oncol. 2015; 1: 1133-1134

    • Schrag D.
    • Chung K.Y.
    • Flombaum C.
    • Saltz L.

    Cetuximab therapy and symptomatic hypomagnesemia.

    J Natl Cancer Inst. 2005; 97: 1221-1224

    • Inose R.
    • Takahashi K.
    • Nishikawa T.
    • Nagayama K.

    Yakugaku Zasshi. 2015; 135: 1403-1407

    • Chen P.
    • Wang L.
    • Li H.
    • Liu B.
    • Zou Z.

    Incidence and risk of hypomagnesemia in advanced cancer patients treated with cetuximab: a meta-analysis.

    Oncol Lett. 2013; 5: 1915-1920

    • Cao Y.
    • Liao C.
    • Tan A.
    • Liu L.
    • Gao F.

    Meta-analysis of incidence and risk of hypomagnesemia with cetuximab for advanced cancer.

    Chemotherapy. 2010; 56: 459-465

    • Jhaveri K.D.
    • Wanchoo R.
    • Sakhiya V.
    • Ross D.W.
    • Fishbane S.

    Adverse renal effects of novel molecular oncologic targeted therapies: a narrative review.

    Kidney Int Rep. 2016; 2: 108-123

    • Jhaveri K.D.
    • Sakhiya V.
    • Wanchoo R.
    • Ross D.W.
    • Fishbane S.

    Renal effects of novel anticancer targeted therapies: a review of the Food and Drug Administration Adverse Event Reporting System.

    Kidney Int. 2016; 90: 706-707

    • Sasaki K.
    • Anderson E.
    • Shankland S.J.
    • Nicosia R.F.

    Diffuse proliferative glomerulonephritis associated with cetuximab, an epidermal growth factor receptor inhibitor.

    Am J Kidney Dis. 2013; 61: 988-991

    • Manthri S.
    • Bandaru S.
    • Chang A.
    • Hudali T.

    Cetuximab-associated crescentic diffuse proliferative glomerulonephritis.

    Case Rep Nephrol. 2017; 2017: 7964015

    • Ito C.
    • Fujii H.
    • Ogura M.
    • Sato H.
    • Kusano E.

    Cetuximab-induced nephrotic syndrome in a case of metastatic rectal cancer.

    J Oncol Pharm Pract. 2013; 19: 265-268

    • Howard S.C.
    • Trifilio S.
    • Gregory T.K.
    • Baxer N.
    • McBride A.

    Tumor lysis syndrome in the era of novel and targeted agents in patients with hematologic malignancies: a systematic review.

    Ann Hematol. 2016; 95: 563-573

    • Moutouh-de Parseval L.A.
    • Weiss L.
    • DeLap R.J.
    • Knight R.D.
    • Zeldis J.B.

    Tumor lysis syndrome/tumor flare reaction in lenalidomide-treated chronic lymphocytic leukemia.

    J Clin Oncol. 2007; 25: 5047

    • Schnell P.
    • Bartlett C.H.
    • Solomon B.J.
    • et al.

    Complex renal cysts associated with crizotinib treatment.

    Cancer Med. 2015; 4: 887-896

    • Klempner S.J.
    • Aubin G.
    • Dash A.
    • Ou S.H.

    Spontaneous regression of crizotinib-associated complex renal cysts during continuous crizotinib treatment.

    Oncologist. 2014; 19: 1008-1010

  • The nephrotoxicity of new immunotherapies.

    Expert Rev Clin Pharmacol. 2019; 12: 513-521

    • Grigor E.J.M.
    • Fergusson D.
    • Kekre N.
    • et al.

    Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis.

    Transfus Med Rev. 2019; 33: 98-110

    • Fitzgerald J.C.
    • Weiss S.L.
    • Maude S.L.
    • et al.

    Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia.

    Crit Care Med. 2017; 45: e124-e131

  • Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia.

    Hematology Am Soc Hematol Educ Program. 2016; 2016: 567-572

    • Perazella M.A.
    • Shirali A.C.

    Nephrotoxicity of cancer immunotherapies: past, present and future.

    J Am Soc Nephrol. 2018; 29: 2039-2052

  • Overview of interferon: Characteristics, signaling and anti-cancer effect.

    Arch Biotechnol Biomed. 2017; 1: 001-016https://doi.org/10.29328/journal.hjb.1001001

    • Markowitz G.S.
    • Nasr S.H.
    • Stokes M.B.
    • D’Agati V.D.

    Treatment with IFN-{alpha}, -{beta}, or -{gamma} is associated with collapsing focal segmental glomerulosclerosis.

    Clin J Am Soc Nephrol. 2010; 5: 607-615

    • Quesada J.R.
    • Talpaz M.
    • Rios A.
    • Kurzrock R.
    • Gutterman J.U.

    Clinical toxicity of interferons in cancer patients: a review.

    J Clin Oncol. 1986; 4: 234-243

    • Colovic M.
    • Jurisic V.
    • Jankovic G.
    • Jovanovic D.
    • Nikolic L.J.
    • Dimitrijevic J.

    Interferon alpha sensitisation induced fatal renal insufficiency in a patient with chronic myeloid leukaemia: case report and review of literature.

    J Clin Pathol. 2006; 59: 879-881

    • Thaunat O.
    • Delahousse M.
    • Fakhouri F.
    • et al.

    Nephrotic syndrome associated with hemophagocytic syndrome.

    Kidney Int. 2006; 69: 1892-1898

    • Vandenborre K.
    • Van Gool S.W.
    • Kasran A.
    • Ceuppens J.L.
    • Boogaerts M.A.
    • Vandenberghe P.

    Interaction of CTLA-4 (CD152) with CD80 or CD86 inhibits human T-cell activation.

    Immunology. 1999; 98: 413-421

    • Sheppard K.A.
    • Fitz L.J.
    • Lee J.M.
    • et al.

    PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta.

    FEBS Lett. 2004; 574: 37-41

    • Abril-Rodriguez G.
    • Ribas A.

    SnapShot: immune checkpoint inhibitors.

    Cancer Cell. 2017; 31: 848-848.e1

    • Cortazar F.B.
    • Marrone K.A.
    • Troxell M.L.
    • et al.

    Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors.

    Kidney Int. 2016; 90: 638-647

    • Manohar S.
    • Kompotiatis P.
    • Thongprayoon C.
    • Cheungpasitporn W.
    • Herrmann J.
    • Herrmann S.M.

    Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: meta-analysis.

    Nephrol Dial Transplant. 2019; 34: 108-117

    • Wanchoo R.
    • Karam S.
    • Uppal N.N.
    • et al.

    Adverse renal effects of immune checkpoint inhibitors: a narrative review.

    Am J Nephrol. 2017; 45: 160-169

    • Izzedine H.
    • Mateus C.
    • Boutros C.
    • et al.

    Renal effects of immune checkpoint inhibitors.

    Nephrol Dial Transplant. 2017; 32: 936-942

    • Spain L.
    • Diem S.
    • Larkin J.

    Management of toxicities of immune checkpoint inhibitors.

    Cancer Treat Rev. 2016; 44: 51-60

    • Izzedine H.
    • Mathian A.
    • Champiat S.
    • et al.

    Renal toxicities associated with pembrolizumab.

    Clin Kidney J. 2019; 12: 81-88

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: