Home Nephro Research Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka

Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka

Credits to the Source Link Obum
Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka
  • 1.

    Jentsch, T. J. & Pusch, M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol. Rev. 98, 1493–1590, https://doi.org/10.1152/physrev.00047.2017 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Ellison, D. H. Clinical Pharmacology in Diuretic Use. Clin. J. Am. Soc. Nephrol. 14, 1248–1257, https://doi.org/10.2215/CJN.09630818 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Testani, J. M., Chen, J., McCauley, B. D., Kimmel, S. E. & Shannon, R. P. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122, 265–272, https://doi.org/10.1161/CIRCULATIONAHA.109.933275 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Fong, P. CLC-K channels: if the drug fits, use it. EMBO Rep. 5, 565–566, https://doi.org/10.1038/sj.embor.7400168 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Liantonio, A. et al. In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats: a new drug target for hypertension? J. Hypertens. 30, 153–167, https://doi.org/10.1097/HJH.0b013e32834d9eb9 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Jentsch, T. J., Stein, V., Weinreich, F. & Zdebik, A. A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568, https://doi.org/10.1152/physrev.00029.2001 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Uchida, S. & Sasaki, S. Function of chloride channels in the kidney. Annu. Rev. Physio.l 67, 759–778, https://doi.org/10.1146/annurev.physiol.67.032003.153547 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Simon, D. B. et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat. Genet. 17, 171–178, https://doi.org/10.1038/ng1097-171 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Grill, A. et al. Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene. Acta Physiol. (Oxf) 218, 198–211, https://doi.org/10.1111/apha.12755 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Hennings, J. C. et al. The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron. J. Am. Soc. Nephrol. 28, 209–217, https://doi.org/10.1681/ASN.2016010085 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Matsumura, Y. et al. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat. Genet. 21, 95–98, https://doi.org/10.1038/5036 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Liu, W. et al. Analysis of NaCl transport in thin ascending limb of Henle’s loop in CLC-K1 null mice. Am. J. Physiol. Renal Physio.l 282, F451–457, https://doi.org/10.1152/ajprenal.0192.2001 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Estevez, R. et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414, 558–561, https://doi.org/10.1038/35107099 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Scholl, U. et al. Barttin modulates trafficking and function of ClC-K channels. Proc. Natl. Acad. Sci. USA 103, 11411–11416, https://doi.org/10.1073/pnas.0601631103 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Gradogna, A., Babini, E., Picollo, A. & Pusch, M. A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels. J. Gen. Physiol. 136, 311–323, https://doi.org/10.1085/jgp.201010455 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Imbrici, P., Liantonio, A., Gradogna, A., Pusch, M. & Camerino, D. C. Targeting kidney CLC-K channels: Pharmacological profile in a human cell line versus Xenopus oocytes. Bba-Biomembranes 1838, 2484–2491, https://doi.org/10.1016/j.bbamem.2014.05.017 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Steinke, K. V. et al. Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional. J. Biol. Chem. 290, 17390–17400, https://doi.org/10.1074/jbc.M114.631705 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Gerbino, A. et al. Dandelion Root Extract Induces Intracellular Ca(2+) Increases in HEK293 Cells. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19041112 (2018).

  • 19.

    Racz-Kotilla, E., Racz, G. & Solomon, A. The action of Taraxacum officinale extracts on the body weight and diuresis of laboratory animals. Planta Med. 26, 212–217 (1974).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Hook, I., McGee, A. & Henman, M. Evaluation of Dandelion for Diuretic Activity and Variation in Potassium Content. International Journal of Pharmacognosy 31, 29–34, https://doi.org/10.3109/13880209309082914 (1993).

    Article 

    Google Scholar
     

  • 21.

    Clare, B. A., Conroy, R. S. & Spelman, K. The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. J. Altern. Complement. Med. 15, 929–934, https://doi.org/10.1089/acm.2008.0152 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Fischer, M., Janssen, A. G. & Fahlke, C. Barttin activates ClC-K channel function by modulating gating. J. Am. Soc. Nephrol. 21, 1281–1289, https://doi.org/10.1681/ASN.2009121274 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Tan, H., Bungert-Plumke, S., Fahlke, C. & Stolting, G. Reduced Membrane Insertion of CLC-K by V33L Barttin Results in Loss of Hearing, but Leaves Kidney Function Intact. Front. Physiol. 8, 269, https://doi.org/10.3389/fphys.2017.00269 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Flemmer, A. W., Gimenez, I., Dowd, B. F., Darman, R. B. & Forbush, B. Activation of the Na-K-Cl cotransporter NKCC1 detected with a phospho-specific antibody. J. Biol. Chem. 277, 37551–37558, https://doi.org/10.1074/jbc.M206294200 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Gimenez, I. & Forbush, B. Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2). Am. J. Physiol. Renal Physiol. 289, F1341–1345, https://doi.org/10.1152/ajprenal.00214.2005 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Carmosino, M. et al. NKCC2 is activated in Milan hypertensive rats contributing to the maintenance of salt-sensitive hypertension. Pflugers Arch. 462, 281–291, https://doi.org/10.1007/s00424-011-0967-9 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800–14804, https://doi.org/10.1074/jbc.272.23.14800 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Procino, G. et al. Ser-256 phosphorylation dynamics of Aquaporin 2 during maturation from the ER to the vesicular compartment in renal cells. FASEB J. 17, 1886–1888, https://doi.org/10.1096/fj.02-0870fje (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Lipp, P. & Reither, G. Protein kinase C: the “masters” of calcium and lipid. Cold Spring Harb. Perspect. Biol. 3, https://doi.org/10.1101/cshperspect.a004556 (2011).

  • 30.

    Kobayashi, E., Nakano, H., Morimoto, M., Tamaoki, T. & Calphostin, C. UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 159, 548–553, https://doi.org/10.1016/0006-291x(89)90028-4 (1989).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Moore, D. J. et al. Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim. Biophys. Acta 1521, 107–119, https://doi.org/10.1016/s0167-4781(01)00291-3 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Tran, E., Sun, H. & Fang, Y. Dynamic mass redistribution assays decode surface influence on signaling of endogenous purinergic P2Y receptors. Assay Drug Dev. Technol. 10, 37–45, https://doi.org/10.1089/adt.2011.0392 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Burnstock, G., Evans, L. C. & Bailey, M. A. Purinergic signalling in the kidney in health and disease. Purinergic Signal 10, 71–101, https://doi.org/10.1007/s11302-013-9400-5 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Embark, H. M. et al. Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases. Kidney Int. 66, 1918–1925, https://doi.org/10.1111/j.1523-1755.2004.00966.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Vina-Vilaseca, A., Bender-Sigel, J., Sorkina, T., Closs, E. I. & Sorkin, A. Protein kinase C-dependent ubiquitination and clathrin-mediated endocytosis of the cationic amino acid transporter CAT-1. J. Biol. Chem. 286, 8697–8706, https://doi.org/10.1074/jbc.M110.186858 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Vina-Vilaseca, A. & Sorkin, A. Lysine 63-linked polyubiquitination of the dopamine transporter requires WW3 and WW4 domains of Nedd4-2 and UBE2D ubiquitin-conjugating enzymes. J. Biol. Chem. 285, 7645–7656, https://doi.org/10.1074/jbc.M109.058990 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Garcia-Tardon, N. et al. Protein kinase C (PKC)-promoted endocytosis of glutamate transporter GLT-1 requires ubiquitin ligase Nedd4-2-dependent ubiquitination but not phosphorylation. J. Biol. Chem. 287, 19177–19187, https://doi.org/10.1074/jbc.M112.355909 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Mund, T., Lewis, M. J., Maslen, S. & Pelham, H. R. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc. Natl. Acad. Sci. USA 111, 16736–16741, https://doi.org/10.1073/pnas.1412152111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Gradogna, A. & Pusch, M. Alkaline pH Block of CLC-K Kidney Chloride Channels Mediated by a Pore Lysine Residue. Biophys. J. 105, 80–90, https://doi.org/10.1016/j.bpj.2013.05.044 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Andrini, O. et al. CLCNKB mutations causing mild Bartter syndrome profoundly alter the pH and Ca2+ dependence of ClC-Kb channels. Pflug. Arch. Eur. J. Phy. 466, 1713–1723, https://doi.org/10.1007/s00424-013-1401-2 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Gradogna, A. & Pusch, M. Molecular pharmacology of kidney and inner ear CLC-K chloride channels. Front. Pharmacol. 1, UNSP 130 10.3389/fphar.2010.00130 (2010).

  • 42.

    Paulais, M. & Teulon, J. Camp-Activated Chloride Channel in the Basolateral Membrane of the Thick Ascending Limb of the Mouse Kidney. J. Membrane Biol. 113, 253–260, https://doi.org/10.1007/Bf01870076 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Lourdel, S., Paulais, M., Marvao, P., Nissant, A. & Teulon, J. A chloride channel at the basolateral membrane of the distal-convoluted tubule: a candidate ClC-K channel. J. Gen. Physiol. 121, 287–300, https://doi.org/10.1085/jgp.200208737 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Jackson, A., Sedaghat, K., Minerds, K., James, C. & Tiberi, M. Opposing effects of phorbol-12-myristate-13-acetate, an activator of protein kinase C, on the signaling of structurally related human dopamine D1 and D5 receptors. J. Neurochem. 95, 1387–1400, https://doi.org/10.1111/j.1471-4159.2005.03476.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Liu, M. et al. Co-ordinated activation of classical and novel PKC isoforms is required for PMA-induced mTORC1 activation. PLoS One 12, e0184818, https://doi.org/10.1371/journal.pone.0184818 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kajimoto, T. et al. Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Sci. Signal 12, https://doi.org/10.1126/scisignal.aat6662 (2019).

  • 47.

    Mizuno, K. et al. UCN-01, an anti-tumor drug, is a selective inhibitor of the conventional PKC subfamily. FEBS Lett. 359, 259–261, https://doi.org/10.1016/0014-5793(95)00042-8 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Chen, M. F. & Jockusch, H. Role of phosphorylation and physiological state in the regulation of the muscular chloride channel ClC-1: a voltage-clamp study on isolated M. interosseus fibers. Biochem. Biophys. Res. Commun. 261, 528–533, https://doi.org/10.1006/bbrc.1999.1061 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Pedersen, T. H., Macdonald, W. A., de Paoli, F. V., Gurung, I. S. & Nielsen, O. B. Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle. J. Gen. Physiol. 134, 323–337, https://doi.org/10.1085/jgp.200910291 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Hsiao, K. M., Huang, R. Y., Tang, P. H. & Lin, M. J. Functional study of CLC-1 mutants expressed in Xenopus oocytes reveals that a C-terminal region Thr891-Ser892-Thr893 is responsible for the effects of protein kinase C activator. Cell Physiol. Biochem. 25, 687–694, https://doi.org/10.1159/000315088 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Gorinski, N. et al. DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels. J. Biol. Chem., https://doi.org/10.1074/jbc.RA119.011049 (2020).

  • 52.

    Bailey, M. A. et al. Axial distribution and characterization of basolateral P2Y receptors along the rat renal tubule. Kidney Int. 58, 1893–1901, https://doi.org/10.1111/j.1523-1755.2000.00361.x (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Erb, L., Liao, Z. J., Seye, C. I. & Weisman, G. A. P2 receptors: intracellular signaling. Pflug. Arch. Eur. J. Phy. 452, 552–562, https://doi.org/10.1007/s00424-006-0069-2 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Vallon, V., Stockand, J. & Rieg, T. P2Y receptors and kidney function. Wiley Interdiscip. Rev. Membr. Transp. Signal 1, 731–742, https://doi.org/10.1002/wmts.61 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Imbert-Teboul, M. & Champigneulle, A. [Functional expression of vasopressin receptors V1a and V2 along the mammalian nephron]. C. R. Seances Soc. Biol. Fil. 189, 151–167 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Wasilewski, M. A., Myers, V. D., Recchia, F. A., Feldman, A. M. & Tilley, D. G. Arginine vasopressin receptor signaling and functional outcomes in heart failure. Cell Signal 28, 224–233, https://doi.org/10.1016/j.cellsig.2015.07.021 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 57.

    Ikeda, M., Yoshitomi, K., Imai, M. & Kurokawa, K. Cell Ca2+ response to luminal vasopressin in cortical collecting tubule principal cells. Kidney Int. 45, 811–816, https://doi.org/10.1038/ki.1994.107 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Gerbino, A. et al. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney. PLoS One 11, e0156021, https://doi.org/10.1371/journal.pone.0156021 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Christensen, B. M., Zelenina, M., Aperia, A. & Nielsen, S. Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am. J. Physiol. Renal Physiol. 278, F29–42, https://doi.org/10.1152/ajprenal.2000.278.1.F29 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232, https://doi.org/10.1111/j.1365-2818.2006.01706.x (2006).

    MathSciNet 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Riazuddin, S. et al. Molecular basis of DFNB73: mutations of BSND can cause nonsyndromic deafness or Bartter syndrome. Am. J. Hum. Genet. 85, 273–280, https://doi.org/10.1016/j.ajhg.2009.07.003 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: