Home Nephro Research Roles for urothelium in normal and aberrant urinary tract development

Roles for urothelium in normal and aberrant urinary tract development

Credits to the Source Link Obum
Roles for urothelium in normal and aberrant urinary tract development
  • 1.

    Murugapoopathy, V. & Gupta, I. R. A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin. J. Am. Soc. Nephrol. 15, 723–731 (2020).

    PubMed 

    Google Scholar
     

  • 2.

    Sanna-Cherchi, S., Westland, R., Ghiggeri, G. M. & Gharavi, A. G. Genetic basis of human congenital anomalies of the kidney and urinary tract. J. Clin. Invest. 128, 4–15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    BDMP/CPHA. Birth Defects Monitoring Program (BDMP)/Commission on Professional and Hospital Activities (CPHA) surveillance data, 1988–1991. Teratology 48, 658–675 (1993).


    Google Scholar
     

  • 4.

    Garne, E., Dolk, H., Loane, M., Boyd, P. A. & Eurocat EUROCAT website data on prenatal detection rates of congenital anomalies. J. Med. Screen. 17, 97–98 (2010).

    PubMed 

    Google Scholar
     

  • 5.

    MACDP. Metropolitan Atlanta Congenital Defects Program surveillance data, 1988–1991. Teratology 48, 695–709 (1993).


    Google Scholar
     

  • 6.

    Schulman, J., Edmonds, L. D., McClearn, A. B., Jensvold, N. & Shaw, G. M. Surveillance for and comparison of birth defect prevalences in two geographic areas — United States, 1983–88. MMWR CDC Surveill. Summ. 42, 1–7 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Postoev, V. A. et al. Congenital anomalies of the kidney and the urinary tract: a Murmansk county birth registry study. Birth Defects Res. A Clin. Mol. Teratol. 106, 185–193 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Tain, Y. L., Luh, H., Lin, C. Y. & Hsu, C. N. Incidence and risks of congenital anomalies of kidney and urinary tract in newborns: a population-based case-control study in Taiwan. Medicine 95, e2659 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Harambat, J., van Stralen, K. J., Kim, J. J. & Tizard, E. J. Epidemiology of chronic kidney disease in children. Pediatr. Nephrol. 27, 363–373 (2012).

    PubMed 

    Google Scholar
     

  • 10.

    Sanna-Cherchi, S. et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 76, 528–533 (2009).

    PubMed 

    Google Scholar
     

  • 11.

    Wuhl, E. et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin. J. Am. Soc. Nephrol. 8, 67–74 (2013).

    PubMed 

    Google Scholar
     

  • 12.

    Calderon-Margalit, R. et al. History of childhood kidney disease and risk of adult end-stage renal disease. N. Engl. J. Med. 378, 428–438 (2018).

    PubMed 

    Google Scholar
     

  • 13.

    Chesnaye, N. et al. Demographics of paediatric renal replacement therapy in Europe: a report of the ESPN/ERA-EDTA registry. Pediatr. Nephrol. 29, 2403–2410 (2014).

    PubMed 

    Google Scholar
     

  • 14.

    van der Ven, A. T., Vivante, A. & Hildebrandt, F. Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 36–50 (2018).

    PubMed 

    Google Scholar
     

  • 15.

    Hsu, C. W., Yamamoto, K. T., Henry, R. K., De Roos, A. J. & Flynn, J. T. Prenatal risk factors for childhood CKD. J. Am. Soc. Nephrol. 25, 2105–2111 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Dart, A. B., Ruth, C. A., Sellers, E. A., Au, W. & Dean, H. J. Maternal diabetes mellitus and congenital anomalies of the kidney and urinary tract (CAKUT) in the child. Am. J. Kidney Dis. 65, 684–691 (2015).

    PubMed 

    Google Scholar
     

  • 17.

    Parikh, C. R., McCall, D., Engelman, C. & Schrier, R. W. Congenital renal agenesis: case–control analysis of birth characteristics. Am. J. Kidney Dis. 39, 689–694 (2002).

    PubMed 

    Google Scholar
     

  • 18.

    Pryde, P. G., Sedman, A. B., Nugent, C. E. & Barr, M. Jr. Angiotensin-converting enzyme inhibitor fetopathy. J. Am. Soc. Nephrol. 3, 1575–1582 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G. & Sun, T. T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153–1165 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Acharya, P. et al. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am. J. Physiol. Renal Physiol. 287, F305–F318 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Lavelle, J. et al. Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am. J. Physiol. Renal Physiol. 283, F242–F253 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Smith, N. J. et al. The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder 2, e9 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Hu, P. et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am. J. Physiol. Renal Physiol. 283, F1200–F1207 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Mathai, J. C. et al. Hypercompliant apical membranes of bladder umbrella cells. Biophys. J. 107, 1273–1279 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Truschel, S. T. et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol. Biol. Cell 13, 830–846 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Merrill, L., Gonzalez, E. J., Girard, B. M. & Vizzard, M. A. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat. Rev. Urol. 13, 193–204 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Bohnenpoll, T. et al. Diversification of cell lineages in ureter development. J. Am. Soc. Nephrol. 28, 1792–1801 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Jackson, A. R. et al. Krt5+ urothelial cells are developmental and tissue repair progenitors in the kidney. Am. J. Physiol. Renal Physiol. 317, F757–F766 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. Larsen’s Human Embryology 5th edn (Elsevier/Churchill Livingstone, 2015).

  • 30.

    Gandhi, D. et al. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev. Cell 26, 469–482 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Tash, J. A., David, S. G., Vaughan, E. E. & Herzlinger, D. A. Fibroblast growth factor-7 regulates stratification of the bladder urothelium. J. Urol. 166, 2536–2541 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Papafotiou, G. et al. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 7, 11914 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Faa, G. et al. Morphogenesis and molecular mechanisms involved in human kidney development. J. Cell. Physiol. 227, 1257–1268 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Michos, O. Kidney development: from ureteric bud formation to branching morphogenesis. Curr. Opin. Genet. Dev. 19, 484–490 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Baskin, L. S., Hayward, S. W., Young, P. & Cunha, G. R. Role of mesenchymal-epithelial interactions in normal bladder development. J. Urol. 156, 1820–1827 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Cao, M., Liu, B., Cunha, G. & Baskin, L. Urothelium patterns bladder smooth muscle location. Pediatr. Res. 64, 352–357 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Shiroyanagi, Y. et al. Urothelial sonic hedgehog signaling plays an important role in bladder smooth muscle formation. Differentiation 75, 968–977 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Jenkins, D., Winyard, P. J. & Woolf, A. S. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. J. Anat. 211, 620–629 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Cao, M. et al. Urothelium-derived Sonic hedgehog promotes mesenchymal proliferation and induces bladder smooth muscle differentiation. Differentiation 9, 244–250 (2010).


    Google Scholar
     

  • 41.

    DeSouza, K. R., Saha, M., Carpenter, A. R., Scott, M. & McHugh, K. M. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development. PLoS One 8, e53675 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Cheng, W. et al. Sonic Hedgehog mediator Gli2 regulates bladder mesenchymal patterning. J. Urol. 180, 1543–1550 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Yu, J., Carroll, T. J. & McMahon, A. P. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129, 5301–5312 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Bohnenpoll, T. et al. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet. 13, e1006951 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Mamo, T. M. et al. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum. Mol. Genet. 26, 3553–3563 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Cain, J. E., Islam, E., Haxho, F., Blake, J. & Rosenblum, N. D. GLI3 repressor controls functional development of the mouse ureter. J. Clin. Invest. 121, 1199–1206 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    David, S. G., Cebrian, C., Vaughan, E. D. Jr & Herzlinger, D. c-kit and ureteral peristalsis. J. Urol. 173, 292–295 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Iskander, S. M., Feeney, M. M., Yee, K. & Rosenblum, N. D. Protein kinase 2β is expressed in neural crest-derived urinary pacemaker cells and required for pyeloureteric contraction. J. Am. Soc. Nephrol. 29, 1198–1209 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Feeney, M. M. & Rosenblum, N. D. Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery. Pediatr. Nephrol. 29, 629–635 (2014).

    PubMed 

    Google Scholar
     

  • 50.

    Sheybani-Deloui, S. et al. Activated hedgehog-GLI signaling causes congenital ureteropelvic junction obstruction. J. Am. Soc. Nephrol. 29, 532–544 (2018).

    PubMed 

    Google Scholar
     

  • 51.

    Trowe, M. O. et al. Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development 139, 3099–3108 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Aydogdu, N. et al. TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development 145, dev171827 (2018).

    PubMed 

    Google Scholar
     

  • 53.

    Zupancic, D. & Romih, R. Heterogeneity of uroplakin localization in human normal urothelium, papilloma and papillary carcinoma. Radiol. Oncol. 47, 338–345 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Jenkins, D. et al. De novo uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J. Am. Soc. Nephrol. 16, 2141–2149 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Riedel, I. et al. Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder? Eur. J. Cell Biol. 84, 393–405 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Haraguchi, R. et al. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 134, 525–533 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Haraguchi, R. et al. The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis. PLoS One 7, e42245 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    He, J. L. et al. Mutation screening of BMP4 and Id2 genes in Chinese patients with congenital ureteropelvic junction obstruction. Eur. J. Pediatr. 171, 451–456 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Reis, G. S. et al. Study of the association between the BMP4 gene and congenital anomalies of the kidney and urinary tract. J. Pediatr. 90, 58–64 (2014).


    Google Scholar
     

  • 60.

    Weber, S. et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J. Am. Soc. Nephrol. 19, 891–903 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Dubourg, C. et al. Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: mutation review and genotype-phenotype correlations. Hum. Mutat. 24, 43–51 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Hilger, A. C. et al. Targeted resequencing of 29 candidate genes and mouse expression studies implicate ZIC3 and FOXF1 in human VATER/VACTERL association. Hum. Mutat. 36, 1150–1154 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348–2361 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Kolvenbach, C. M. et al. Rare variants in BNC2 are implicated in autosomal-dominant congenital lower urinary-tract obstruction. Am. J. Hum. Genet. 104, 994–1006 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Bhoj, E. J. et al. Human balanced translocation and mouse gene inactivation implicate basonuclin 2 in distal urethral development. Eur. J. Hum. Genet. 19, 540–546 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305–316 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Cheng, W. et al. DeltaNp63 plays an anti-apoptotic role in ventral bladder development. Development 133, 4783–4792 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Ching, B. J. et al. p63 (TP73L) a key player in embryonic urogenital development with significant dysregulation in human bladder exstrophy tissue. Int. J. Mol. Med. 26, 861–867 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Wilkins, S. et al. Insertion/deletion polymorphisms in the DeltaNp63 promoter are a risk factor for bladder exstrophy epispadias complex. PLoS Genet. 8, e1003070 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Kong, X. T. et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J. Cell Biol. 167, 1195–1204 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Carpenter, A. R. et al. Uroplakin 1b is critical in urinary tract development and urothelial differentiation and homeostasis. Kidney Int. 89, 612–624 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Carpenter, A. R. & McHugh, K. M. Role of renal urothelium in the development and progression of kidney disease. Pediatr. Nephrol. 32, 557–564 (2017).

    PubMed 

    Google Scholar
     

  • 73.

    Hu, P. et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J. Cell Biol. 151, 961–972 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Deng, F. M. et al. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. J. Cell Biol. 159, 685–694 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Rudat, C. et al. Upk3b is dispensable for development and integrity of urothelium and mesothelium. PLoS One 9, e112112 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Liao, Y. et al. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol. Biol. Cell. 29, 3128–3143 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Mahbub Hasan, A. K. et al. The egg membrane microdomain-associated uroplakin III-Src system becomes functional during oocyte maturation and is required for bidirectional gamete signaling at fertilization in Xenopus laevis. Development 141, 1705–1714 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Mahbub Hasan, A. K. et al. Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev. Biol. 286, 483–492 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Sakakibara, K. et al. Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J. Biol. Chem. 280, 15029–15037 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Mitra, S. et al. Requirement for a uroplakin 3a-like protein in the development of zebrafish pronephric tubule epithelial cell function, morphogenesis, and polarity. PLoS One 7, e41816 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Schonfelder, E. M. et al. Mutations in uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am. J. Kidney Dis. 47, 1004–1012 (2006).

    PubMed 

    Google Scholar
     

  • 83.

    Jiang, S. et al. Lack of major involvement of human uroplakin genes in vesicoureteral reflux: implications for disease heterogeneity. Kidney Int. 66, 10–19 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Kelly, H. et al. Uroplakin III is not a major candidate gene for primary vesicoureteral reflux. Eur. J. Hum. Genet. 13, 500–502 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Jenkins, D. et al. Mutation analyses of uroplakin II in children with renal tract malformations. Nephrol. Dial. Transplant. 21, 3415–3421 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Fujita, H., Hamazaki, Y., Noda, Y., Oshima, M. & Minato, N. Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS One 7, e52272 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Fogelgren, B. et al. Urothelial defects from targeted inactivation of exocyst Sec10 in mice cause ureteropelvic junction obstructions. PLoS One 10, e0129346 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Martin-Urdiroz, M., Deeks, M. J., Horton, C. G., Dawe, H. R. & Jourdain, I. The Exocyst complex in health and disease. Front. Cell Dev. Biol. 4, 24 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Lee, A. J. et al. Fibroproliferative response to urothelial failure obliterates the ureter lumen in a mouse model of prenatal congenital obstructive nephropathy. Sci. Rep. 6, 31137 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Hou, T. et al. Aberrant differentiation of urothelial cells in patients with ureteropelvic junction obstruction. Int. J. Clin. Exp. Pathol. 7, 5837–5845 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Chiou, Y. Y., Shieh, C. C., Cheng, H. L. & Tang, M. J. Intrinsic expression of Th2 cytokines in urothelium of congenital ureteropelvic junction obstruction. Kidney Int. 67, 638–646 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Huang, W. Y., Olumi, A. F. & Rosen, S. Urothelial mucosal malformation: a rare cause for ureteropelvic junction obstruction. Pediatr. Dev. Pathol. 9, 72–74 (2006).

    PubMed 

    Google Scholar
     

  • 93.

    Romih, R., Korosec, P., de Mello, W. Jr & Jezernik, K. Differentiation of epithelial cells in the urinary tract. Cell Tissue Res. 320, 259–268 (2005).

    PubMed 

    Google Scholar
     

  • 94.

    Becknell, B. et al. Molecular basis of renal adaptation in a murine model of congenital obstructive nephropathy. PLoS One 8, e72762 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Jackson, A. R. et al. The uroplakin plaque promotes renal structural integrity during congenital and acquired urinary tract obstruction. Am. J. Physiol. Renal Physiol. 315, F1019–F1031 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Girshovich, A. et al. Ureteral obstruction promotes proliferation and differentiation of the renal urothelium into a bladder-like phenotype. Kidney Int. 82, 428–435 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Chen, W. Y. et al. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp. Mol. Med. 50, 36 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Sorantin, E., Fotter, R., Aigner, R., Ring, E. & Riccabona, M. The sonographically thickened wall of the upper urinary tract system: correlation with other imaging methods. Pediatr. Radiol. 27, 667–671 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Tain, Y. L. Renal pelvic wall thickening in childhood urinary tract infections — evidence of acute pyelitis or vesicoureteral reflux? Scand. J. Urol. Nephrol. 37, 28–30 (2003).

    PubMed 

    Google Scholar
     

  • 100.

    Nicolet, V. et al. Thickening of the renal collecting system: a nonspecific finding at US. Radiology 168, 411–413 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Birnholz, J. C. & Merkel, F. K. Submucosal edema of the collecting system: a new ultrasonic sign of severe, acute renal allograft rejection. A clinical note. Radiology 154, 190 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Avni, E. F. et al. US demonstration of pyelitis and ureteritis in children. Pediatr. Radiol. 18, 134–139 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Gordon, Z. N. et al. Uroepithelial thickening improves detection of vesicoureteral reflux in infants with prenatal hydronephrosis. J. Pediatr. Urol. 12, 257 e251–e257 (2016).


    Google Scholar
     

  • 104.

    Gordon, Z. N., McLeod, D. J., Becknell, B., Bates, D. G. & Alpert, S. A. Uroepithelial thickening on sonography improves detection of vesicoureteral reflux in children with first febrile urinary tract infection. J. Urol. 194, 1074–1079 (2015).

    PubMed 

    Google Scholar
     

  • 105.

    Wallace, S. S. et al. Renal ultrasound for infants younger than 2 months with a febrile urinary tract infection. AJR Am. J. Roentgenol. 205, 894–898 (2015).

    PubMed 

    Google Scholar
     

  • 106.

    Li, B. et al. Inflammation drives renal scarring in experimental pyelonephritis. Am. J. Physiol. Renal Physiol. 312, F43–F53 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Gupta, S. et al. Urinary antimicrobial peptides: potential novel biomarkers of obstructive uropathy. J. Pediatr. Urol. 14, 238e231–238e236 (2018).


    Google Scholar
     

  • 108.

    Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Makino, T., Kawashima, H., Konishi, H., Nakatani, T. & Kiyama, H. Elevated urinary levels and urothelial expression of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein in patients with interstitial cystitis. Urology 75, 933–937 (2010).

    PubMed 

    Google Scholar
     

  • 110.

    Spencer, J. D. et al. Expression and significance of the HIP/PAP and RegIIIγ antimicrobial peptides during mammalian urinary tract infection. PLoS One 10, e0144024 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: