Home Chronic Kidney Disease The Many Faces of Calcineurin Inhibitor Toxicity—What the FK?

The Many Faces of Calcineurin Inhibitor Toxicity—What the FK?

Credits to the Source Link Obum
The Many Faces of Calcineurin Inhibitor Toxicity—What the FK?
    • Hart A.
    • Smith J.M.
    • Skeans M.A.
    • et al.

    OPTN/SRTR 2017 annual data report: kidney.

    Am J Transpl. 2019; 19: 19-123

    • Laurin L.P.
    • Gasim A.M.
    • Poulton C.J.
    • et al.

    Treatment with glucocorticoids or calcineurin inhibitors in primary FSGS.

    Clin J Am Soc Nephrol. 2016; 11: 386-394

    • Song Y.H.
    • Cai G.Y.
    • Xiao Y.F.
    • et al.

    Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: a meta-analysis.

    BMC Nephrol. 2017; 18: 61https://doi.org/10.1186/s12882-017-0467-z

    • Rovin B.H.
    • Solomons N.
    • Pendergraft 3rd, W.F.
    • et al.

    A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis.

    Kidney Int. 2019; 95: 219-231

    • Cattran D.C.
    • Appel G.B.
    • Hebert L.A.
    • et al.

    Cyclosporine in patients with steroid-resistant membranous nephropathy: a randomized trial.

    Kidney Int. 2001; 59: 1484-1490

    • Nankivell B.J.
    • Borrows R.J.
    • Fung C.L.
    • O’Connell P.J.
    • Allen R.D.
    • Chapman J.R.

    The natural history of chronic allograft nephropathy.

    N Engl J Med. 2003; 349: 2326-2333

    • Borel J.F.
    • Feurer C.
    • Gubler H.U.
    • Stahelin H.

    Biological effects of cyclosporin A: a new antilymphocytic agent.

    Agents Actions. 1976; 6: 468-475

    • Calne R.Y.
    • Rolles K.
    • White D.J.
    • et al.

    Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers.

    Lancet. 1979; 2: 1033-1036

    • Starzl T.E.
    • Todo S.
    • Fung J.
    • Demetris A.J.
    • Venkataramman R.
    • Jain A.

    FK 506 for liver, kidney, and pancreas transplantation.

    Lancet. 1989; 2: 1000-1004

    • Flanagan W.M.
    • Corthesy B.
    • Bram R.J.
    • Crabtree G.R.

    Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A.

    Nature. 1991; 352: 803-807

    • Clipstone N.A.
    • Crabtree G.R.

    Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation.

    Nature. 1992; 357: 695-697

    • O’Keefe S.J.
    • Tamura J.
    • Kincaid R.L.
    • Tocci M.J.
    • O’Neill E.A.

    FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin.

    Nature. 1992; 357: 692-694

    • Curtis J.J.
    • Jones P.
    • Barbeito R.

    Large within-day variation in cyclosporine absorption: circadian variation or food effect?.

    Clin J Am Soc Nephrol. 2006; 1: 462-466

  • Full Prescribing Information for Prograf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210115s000,050708s047,050709s040lbl.pdf. Accessed September 7, 2019.

    • Mancinelli L.M.
    • Frassetto L.
    • Floren L.C.
    • et al.

    The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups.

    Clin Pharmacol Ther. 2001; 69: 24-31

    • Garcia-Roca P.
    • Medeiros M.
    • Reyes H.
    • et al.

    CYP3A5 polymorphism in Mexican renal transplant recipients and its association with tacrolimus dosing.

    Arch Med Res. 2012; 43: 283-287

    • Jacobson P.A.
    • Oetting W.S.
    • Brearley A.M.
    • et al.

    Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium.

    Transplantation. 2011; 91: 300-308

    • Oetting W.S.
    • Schladt D.P.
    • Guan W.
    • et al.

    Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles.

    Am J Transpl. 2016; 16: 574-582

    • Kuypers D.R.
    • Naesens M.
    • de Jonge H.
    • Lerut E.
    • Verbeke K.
    • Vanrenterghem Y.

    Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients.

    Ther Drug Monit. 2010; 32: 394-404

    • Tavira B.
    • Gomez J.
    • Diaz-Corte C.
    • et al.

    The donor ABCB1 (MDR-1) C3435T polymorphism is a determinant of the graft glomerular filtration rate among tacrolimus treated kidney transplanted patients.

    J Hum Genet. 2015; 60: 273-276

    • Schiff J.
    • Cole E.
    • Cantarovich M.

    Therapeutic monitoring of calcineurin inhibitors for the nephrologist.

    Clin J Am Soc Nephrol. 2007; 2: 374-384

    • Bottiger Y.
    • Brattstrom C.
    • Tyden G.
    • Sawe J.
    • Groth C.G.

    Tacrolimus whole blood concentrations correlate closely to side-effects in renal transplant recipients.

    Br J Clin Pharmacol. 1999; 48: 445-448

    • Israni A.K.
    • Riad S.M.
    • Leduc R.
    • et al.

    Tacrolimus trough levels after month 3 as a predictor of acute rejection following kidney transplantation: a lesson learned from DeKAF genomics.

    Transpl Int. 2013; 26: 982-989

    • Curtis J.J.
    • Luke R.G.
    • Dubovsky E.
    • Diethelm A.G.
    • Whelchel J.D.
    • Jones P.

    Cyclosporin in therapeutic doses increases renal allograft vascular resistance.

    Lancet. 1986; 2: 477-479

  • Effects of endothelin receptor antagonist on cyclosporine-induced vasoconstriction in isolated rat renal arterioles.

    J Clin Invest. 1993; 91: 2144-2149

    • De Nicola L.
    • Thomson S.C.
    • Wead L.M.
    • Brown M.R.
    • Gabbai F.B.

    Arginine feeding modifies cyclosporine nephrotoxicity in rats.

    J Clin Invest. 1993; 92: 1859-1865

    • Fortin M.C.
    • Raymond M.A.
    • Madore F.
    • et al.

    Increased risk of thrombotic microangiopathy in patients receiving a cyclosporin-sirolimus combination.

    Am J Transpl. 2004; 4: 946-952

    • Remuzzi G.
    • Cravedi P.
    • Perna A.
    • et al.

    Long-term outcome of renal transplantation from older donors.

    N Engl J Med. 2006; 354: 343-352

    • Klintmalm G.
    • Bohman S.O.
    • Sundelin B.
    • Wilczek H.

    Interstitial fibrosis in renal allografts after 12 to 46 months of cyclosporin treatment: beneficial effect of low doses in early post-transplantation period.

    Lancet. 1984; 2: 950-954

    • Henny F.C.
    • Kleinbloesem C.H.
    • Moolenaar A.J.
    • Paul L.C.
    • Breimer D.D.
    • van Es L.A.

    Pharmacokinetics and nephrotoxicity of cyclosporine in renal transplant recipients.

    Transplantation. 1985; 40: 261-265

    • Laskow D.A.
    • Vincenti F.
    • Neylan J.F.
    • Mendez R.
    • Matas A.J.

    An open-label, concentration-ranging trial of FK506 in primary kidney transplantation: a report of the United States Multicenter FK506 Kidney Transplant Group.

    Transplantation. 1996; 62: 900-905

    • Soubhia R.M.
    • Mendes G.E.
    • Mendonca F.Z.
    • Baptista M.A.
    • Cipullo J.P.
    • Burdmann E.A.

    Tacrolimus and nonsteroidal anti-inflammatory drugs: an association to be avoided.

    Am J Nephrol. 2005; 25: 327-334

    • Kuehl P.
    • Zhang J.
    • Lin Y.
    • et al.

    Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression.

    Nat Genet. 2001; 27: 383-391

    • Macphee I.A.
    • Fredericks S.
    • Tai T.
    • et al.

    Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement.

    Transplantation. 2002; 74: 1486-1489

    • Hesselink D.A.
    • van Schaik R.H.
    • van der Heiden I.P.
    • et al.

    Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus.

    Clin Pharmacol Ther. 2003; 74: 245-254

    • Trofe-Clark J.
    • Brennan D.C.
    • West-Thielke P.
    • et al.

    Results of ASERTAA, a randomized prospective crossover pharmacogenetic study of immediate-release versus extended-release tacrolimus in African American kidney transplant recipients.

    Am J Kidney Dis. 2018; 71: 315-326

    • Anglicheau D.
    • Verstuyft C.
    • Laurent-Puig P.
    • et al.

    Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients.

    J Am Soc Nephrol. 2003; 14: 1889-1896

    • Thervet E.
    • Anglicheau D.
    • King B.
    • et al.

    Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients.

    Transplantation. 2003; 76: 1233-1235

    • Tsuchiya N.
    • Satoh S.
    • Tada H.
    • et al.

    Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients.

    Transplantation. 2004; 78: 1182-1187

    • Gervasini G.
    • Garcia M.
    • Macias R.M.
    • Cubero J.J.
    • Caravaca F.
    • Benitez J.

    Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation.

    Transpl Int. 2012; 25: 471-480

    • Singh R.
    • Srivastava A.
    • Kapoor R.
    • Mittal R.D.

    Do drug transporter (ABCB1) SNPs influence cyclosporine and tacrolimus dose requirements and renal allograft outcome in the posttransplantation period?.

    J Clin Pharmacol. 2011; 51: 603-615

    • Pallet N.
    • Etienne I.
    • Buchler M.
    • et al.

    Long-term clinical impact of adaptation of initial tacrolimus dosing to CYP3A5 genotype.

    Am J Transpl. 2016; 16: 2670-2675

    • Del Moral R.G.
    • Olmo A.
    • Osuna A.
    • et al.

    Role of P-glycoprotein in chronic cyclosporine nephrotoxicity and its relationship to intrarenal angiotensin II deposits.

    Transpl Proc. 1998; 30: 2014-2016

    • Koziolek M.J.
    • Riess R.
    • Geiger H.
    • Thevenod F.
    • Hauser I.A.

    Expression of multidrug resistance P-glycoprotein in kidney allografts from cyclosporine A-treated patients.

    Kidney Int. 2001; 60: 156-166

    • Maezono S.
    • Sugimoto K.
    • Sakamoto K.
    • et al.

    Elevated blood concentrations of calcineurin inhibitors during diarrheal episode in pediatric liver transplant recipients: involvement of the suppression of intestinal cytochrome P450 3A and P-glycoprotein.

    Pediatr Transpl. 2005; 9: 315-323

    • Ceschi A.
    • Rauber-Luthy C.
    • Kupferschmidt H.
    • et al.

    Acute calcineurin inhibitor overdose: analysis of cases reported to a national poison center between 1995 and 2011.

    Am J Transplant. 2013; 13: 786-795

    • Lange N.W.
    • Salerno D.M.
    • Berger K.
    • Tsapepas D.S.

    Using known drug interactions to manage supratherapeutic calcineurin inhibitor concentrations.

    Clin Transpl. 2017; 31https://doi.org/10.1111/ctr.13098

  • The nephrologist’s guide to cannabis and cannabinoids.

    Curr Opin Nephrol Hypertens. 2020; 29: 248-257

  • Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review.

    Drug Metab Rev. 2014; 46: 86-95

    • Leino A.D.
    • Emoto C.
    • Fukuda T.
    • Privitera M.
    • Vinks A.A.
    • Alloway R.R.

    Evidence of a clinically significant drug-drug interaction between cannabidiol and tacrolimus [published online ahead of print April 23, 2019].

    Am J Transpl. 2019; https://doi.org/10.1111/ajt.15398

    • Jaeger W.
    • Benet L.Z.
    • Bornheim L.M.

    Inhibition of cyclosporine and tetrahydrocannabinol metabolism by cannabidiol in mouse and human microsomes.

    Xenobiotica. 1996; 26: 275-284

    • Homan K.A.
    • Kolesky D.B.
    • Skylar-Scott M.A.
    • et al.

    Bioprinting of 3D convoluted renal proximal tubules on perfusable chips.

    Sci Rep. 2016; 6: 34845https://doi.org/10.1038/srep34845

    • Ojo A.O.
    • Held P.J.
    • Port F.K.
    • et al.

    Chronic renal failure after transplantation of a nonrenal organ.

    N Engl J Med. 2003; 349: 931-940

    • Elzinga L.W.
    • Rosen S.
    • Bennett W.M.

    Dissociation of glomerular filtration rate from tubulointerstitial fibrosis in experimental chronic cyclosporine nephropathy: role of sodium intake.

    J Am Soc Nephrol. 1993; 4: 214-221

    • Klawitter J.
    • Klawitter J.
    • Schmitz V.
    • et al.

    Low-salt diet and cyclosporine nephrotoxicity: changes in kidney cell metabolism.

    J Proteome Res. 2012; 11: 5135-5144

    • Pichler R.H.
    • Franceschini N.
    • Young B.A.
    • et al.

    Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin.

    J Am Soc Nephrol. 1995; 6: 1186-1196

    • Andoh T.F.
    • Burdmann E.A.
    • Lindsley J.
    • Houghton D.C.
    • Bennett W.M.

    Enhancement of FK506 nephrotoxicity by sodium depletion in an experimental rat model.

    Transplantation. 1994; 57: 483-489

    • Young B.A.
    • Burdmann E.A.
    • Johnson R.J.
    • et al.

    Cellular proliferation and macrophage influx precede interstitial fibrosis in cyclosporine nephrotoxicity.

    Kidney Int. 1995; 48: 439-448

    • Young B.A.
    • Burdmann E.A.
    • Johnson R.J.
    • et al.

    Cyclosporine A induced arteriolopathy in a rat model of chronic cyclosporine nephropathy.

    Kidney Int. 1995; 48: 431-438

    • Nankivell B.J.
    • Borrows R.J.
    • Fung C.L.
    • O’Connell P.J.
    • Allen R.D.
    • Chapman J.R.

    Evolution and pathophysiology of renal-transplant glomerulosclerosis.

    Transplantation. 2004; 78: 461-468

    • Nankivell B.J.
    • Borrows R.J.
    • Fung C.L.
    • O’Connell P.J.
    • Chapman J.R.
    • Allen R.D.

    Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology.

    Transplantation. 2004; 78: 557-565

    • Bakris G.L.
    • Copley J.B.
    • Vicknair N.
    • Sadler R.
    • Leurgans S.

    Calcium channel blockers versus other antihypertensive therapies on progression of NIDDM associated nephropathy.

    Kidney Int. 1996; 50: 1641-1650

    • Martinez-Castelao A.
    • Hueso M.
    • Sanz V.
    • Rejas J.
    • Alsina J.
    • Grinyo J.M.

    Treatment of hypertension after renal transplantation: long-term efficacy of verapamil, enalapril, and doxazosin.

    Kidney Int Suppl. 1998; 54: S130-S134

    • Rump L.C.
    • Oberhauser V.
    • Schwertfeger E.
    • et al.

    Dihydropyridine calcium antagonists and renal function in hypertensive kidney transplant recipients.

    J Hypertens. 2000; 18: 1115-1119

    • Ruggenenti P.
    • Perico N.
    • Mosconi L.
    • et al.

    Calcium channel blockers protect transplant patients from cyclosporine-induced daily renal hypoperfusion.

    Kidney Int. 1993; 43: 706-711

    • Mourad G.
    • Ribstein J.
    • Mimran A.

    Converting-enzyme inhibitor versus calcium antagonist in cyclosporine-treated renal transplants.

    Kidney Int. 1993; 43: 419-425

    • Burdmann E.A.
    • Andoh T.F.
    • Nast C.C.
    • et al.

    Prevention of experimental cyclosporin-induced interstitial fibrosis by losartan and enalapril.

    Am J Physiol. 1995; 269: F491-F499

    • Campistol J.M.
    • Inigo P.
    • Jimenez W.
    • et al.

    Losartan decreases plasma levels of TGF-beta1 in transplant patients with chronic allograft nephropathy.

    Kidney Int. 1999; 56: 714-719

    • Hiremath S.
    • Fergusson D.A.
    • Fergusson N.
    • Bennett A.
    • Knoll G.A.

    Renin-angiotensin system blockade and long-term clinical outcomes in kidney transplant recipients: a meta-analysis of randomized controlled trials.

    Am J Kidney Dis. 2017; 69: 78-86

    • Carlos C.P.
    • Sonehara N.M.
    • Oliani S.M.
    • Burdmann E.A.

    Predictive usefulness of urinary biomarkers for the identification of cyclosporine A-induced nephrotoxicity in a rat model.

    PLoS One. 2014; 9: e103660https://doi.org/10.1371/journal.pone.0103660

    • Gupta G.
    • Regmi A.
    • Kumar D.
    • et al.

    Safe conversion from tacrolimus to belatacept in high immunologic risk kidney transplant recipients with allograft dysfunction.

    Am J Transpl. 2015; 15: 2726-2731

    • Pochineni V.
    • Rondon-Berrios H.

    Electrolyte and acid-base disorders in the renal transplant recipient.

    Front Med (Lausanne). 2018; 5: 261https://doi.org/10.3389/fmed.2018.00261

    • Higgins R.
    • Ramaiyan K.
    • Dasgupta T.
    • et al.

    Hyponatraemia and hyperkalaemia are more frequent in renal transplant recipients treated with tacrolimus than with cyclosporin. Further evidence for differences between cyclosporin and tacrolimus nephrotoxicities.

    Nephrol Dial Transpl. 2004; 19: 444-450

    • Bantle J.P.
    • Nath K.A.
    • Sutherland D.E.
    • Najarian J.S.
    • Ferris T.F.

    Effects of cyclosporine on the renin-angiotensin-aldosterone system and potassium excretion in renal transplant recipients.

    Arch Intern Med. 1985; 145: 505-508

    • Kamel K.S.
    • Ethier J.H.
    • Quaggin S.
    • et al.

    Studies to determine the basis for hyperkalemia in recipients of a renal transplant who are treated with cyclosporine.

    J Am Soc Nephrol. 1992; 2: 1279-1284

    • Terker A.S.
    • Zhang C.
    • McCormick J.A.
    • et al.

    Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride.

    Cell Metab. 2015; 21: 39-50

  • Cyclosporin A inhibits apical secretory K+ channels in rabbit cortical collecting tubule principal cells.

    Kidney Int. 1993; 44: 974-984

    • Adu D.
    • Turney J.
    • Michael J.
    • McMaster P.

    Hyperkalemia in cyclosporin-treated renal allograft recipients.

    Lancet. 1983; 2: 370-372

    • Heering P.J.
    • Kurschat C.
    • Vo D.T.
    • Klein-Vehne N.
    • Fehsel K.
    • Ivens K.

    Aldosterone resistance in kidney transplantation is in part induced by a down-regulation of mineralocorticoid receptor expression.

    Clin Transpl. 2004; 18: 186-192

    • Stahl R.A.
    • Kanz L.
    • Maier B.
    • Schollmeyer P.

    Hyperchloremic metabolic acidosis with high serum potassium in renal transplant recipients: a cyclosporine A associated side effect.

    Clin Nephrol. 1986; 25: 245-248

    • Foley R.J.
    • Hamner R.W.
    • Weinman E.J.

    Serum potassium concentrations in cyclosporine- and azathioprine-treated renal transplant patients.

    Nephron. 1985; 40: 280-285

    • Ishizawa K.
    • Wang Q.
    • Li J.
    • et al.

    Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling.

    Proc Natl Acad Sci U S A. 2019; 116: 3155-3160

    • Gong Y.
    • Wang J.
    • Yang J.
    • Gonzales E.
    • Perez R.
    • Hou J.

    KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8.

    Proc Natl Acad Sci U S A. 2015; 112: 4340-4345

  • Fludrocortisone therapy in renal transplant recipients with persistent hyperkalemia.

    Case Rep Transpl. 2012; 2012: 586859https://doi.org/10.1155/2012/586859

    • Sivakumar V.
    • Sriramnaveen P.
    • Krishna C.
    • et al.

    Role of fludrocortisone in the management of tacrolimus-induced hyperkalemia in a renal transplant recipient.

    Saudi J Kidney Dis Transpl. 2014; 25: 149-151

    • Pavleska-Kuzmanovska S.
    • Popov Z.
    • Ivanovski O.
    • et al.

    Cyclosporine nephrotoxicity and early posttransplant hyperkalemia in living-donor renal recipients: report of 4 cases.

    Exp Clin Transpl. 2014; 12: 479-483

    • Lin W.
    • Mou L.
    • Tu H.
    • et al.

    Clinical analysis of hyperkalemic renal tubular acidosis caused by calcineurin inhibitors in solid organ transplant recipients.

    J Clin Pharm Ther. 2017; 42: 122-124

    • Bacchetta J.
    • Basmaison O.
    • Leclerc A.L.
    • Bertholet-Thomas A.
    • Cochat P.
    • Ranchin B.

    Fludrocortisone as a new tool for managing tubulopathy after pediatric renal transplantation: a series of cases.

    Pediatr Nephrol. 2014; 29: 2061-2064

    • Ali S.R.
    • Shaheen I.
    • Young D.
    • et al.

    Fludrocortisone—a treatment for tubulopathy post-paediatric renal transplantation: a national paediatric nephrology unit experience.

    Pediatr Transpl. 2018; 22: 1-5

    • Dick T.B.
    • Raines A.A.
    • Stinson J.B.
    • Collingridge D.S.
    • Harmston G.E.

    Fludrocortisone is effective in the management of tacrolimus-induced hyperkalemia in liver transplant recipients.

    Transpl Proc. 2011; 43: 2664-2668

    • Park S.
    • Kang E.
    • Park S.
    • et al.

    Metabolic acidosis and long-term clinical outcomes in kidney transplant recipients.

    J Am Soc Nephrol. 2017; 28: 1886-1897

    • Djamali A.
    • Singh T.
    • Melamed M.L.
    • et al.

    Metabolic acidosis 1 year following kidney transplantation and subsequent cardiovascular events and mortality: an observational cohort study.

    Am J Kidney Dis. 2019; 73: 476-485

    • Lea J.P.
    • Sands J.M.
    • McMahon S.J.
    • Tumlin J.A.

    Evidence that the inhibition of Na+/K(+)-ATPase activity by FK506 involves calcineurin.

    Kidney Int. 1994; 46: 647-652

  • Nephron segment-specific inhibition of Na+/K(+)-ATPase activity by cyclosporin A.

    Kidney Int. 1993; 43: 246-251

    • Watanabe S.
    • Tsuruoka S.
    • Vijayakumar S.
    • et al.

    Cyclosporin A produces distal renal tubular acidosis by blocking peptidyl prolyl cis-trans isomerase activity of cyclophilin.

    Am J Physiol Renal Physiol. 2005; 288: F40-F47

  • “I don’t get no respect”: the role of chloride in acute kidney injury.

    Am J Physiol Renal Physiol. 2019; 316: F587-F605

    • de Brito-Ashurst I.
    • Varagunam M.
    • Raftery M.J.
    • Yaqoob M.M.

    Bicarbonate supplementation slows progression of CKD and improves nutritional status.

    J Am Soc Nephrol. 2009; 20: 2075-2084

    • Wiegand A.
    • Ritter A.
    • Graf N.
    • et al.

    Preservation of kidney function in kidney transplant recipients by alkali therapy (Preserve-Transplant Study): rationale and study protocol.

    BMC Nephrol. 2018; 19: 177https://doi.org/10.1186/s12882-018-0956-8

  • Determinants of urinary calcium and uric acid excretion in children after renal transplantation.

    Pediatr Transpl. 2007; 11: 716-720

    • Stapenhorst L.
    • Sassen R.
    • Beck B.
    • Laube N.
    • Hesse A.
    • Hoppe B.

    Hypocitraturia as a risk factor for nephrocalcinosis after kidney transplantation.

    Pediatr Nephrol. 2005; 20: 652-656

    • Nijenhuis T.
    • Hoenderop J.G.
    • Bindels R.J.

    Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia.

    J Am Soc Nephrol. 2004; 15: 549-557

    • Lee C.T.
    • Huynh V.M.
    • Lai L.W.
    • Lien Y.H.

    Cyclosporine A-induced hypercalciuria in calbindin-D28k knockout and wild-type mice.

    Kidney Int. 2002; 62: 2055-2061

    • Barton C.H.
    • Vaziri N.D.
    • Martin D.C.
    • Choi S.
    • Alikhani S.

    Hypomagnesemia and renal magnesium wasting in renal transplant recipients receiving cyclosporine.

    Am J Med. 1987; 83: 693-699

    • al-Khursany I.
    • Thomas T.H.
    • Harrison K.
    • Wilkinson R.

    Reduced erythrocyte and leukocyte magnesium is associated with cyclosporin treatment and hypertension in renal transplant patients.

    Nephrol Dial Transpl. 1992; 7: 251-255

    • Scoble J.E.
    • Freestone A.
    • Varghese Z.
    • Fernando O.N.
    • Sweny P.
    • Moorhead J.F.

    Cyclosporin-induced renal magnesium leak in renal transplant patients.

    Nephrol Dial Transpl. 1990; 5: 812-815

    • Garnier A.S.
    • Duveau A.
    • Planchais M.
    • Subra J.F.
    • Sayegh J.
    • Augusto J.F.

    Serum magnesium after kidney transplantation: a systematic review.

    Nutrients. 2018; 10: 729https://doi.org/10.3390/nu10060729

    • Cheungpasitporn W.
    • Thongprayoon C.
    • Harindhanavudhi T.
    • Edmonds P.J.
    • Erickson S.B.

    Hypomagnesemia linked to new-onset diabetes mellitus after kidney transplantation: a systematic review and meta-analysis.

    Endocr Res. 2016; 41: 142-147

    • Rodrigues N.
    • Santana A.
    • Guerra J.
    • et al.

    Serum magnesium and related factors in long-term renal transplant recipients: an observational study.

    Transpl Proc. 2017; 49: 799-802

  • Cyclosporin-induced hypomagnesaemia and renal magnesium wasting in rats.

    Clin Sci (Lond). 1988; 75: 509-514

    • Miura K.
    • Nakatani T.
    • Asai T.
    • et al.

    Role of hypomagnesemia in chronic cyclosporine nephropathy.

    Transplantation. 2002; 73: 340-347

    • Gores P.F.
    • Fryd D.S.
    • Sutherland D.E.
    • Najarian J.S.
    • Simmons R.L.

    Hyperuricemia after renal transplantation.

    Am J Surg. 1988; 156: 397-400

    • West C.
    • Carpenter B.J.
    • Hakala T.R.

    The incidence of gout in renal transplant recipients.

    Am J Kidney Dis. 1987; 10: 369-372

    • Burack D.A.
    • Griffith B.P.
    • Thompson M.E.
    • Kahl L.E.

    Hyperuricemia and gout among heart transplant recipients receiving cyclosporine.

    Am J Med. 1992; 92: 141-146

    • Delaney V.
    • Sumrani N.
    • Daskalakis P.
    • Hong J.H.
    • Sommer B.G.

    Hyperuricemia and gout in renal allograft recipients.

    Transpl Proc. 1992; 24: 1773-1774

    • Lin H.Y.
    • Rocher L.L.
    • McQuillan M.A.
    • Schmaltz S.
    • Palella T.D.
    • Fox I.H.

    Cyclosporine-induced hyperuricemia and gout.

    N Engl J Med. 1989; 321: 287-292

    • Numakura K.
    • Satoh S.
    • Tsuchiya N.
    • et al.

    Hyperuricemia at 1 year after renal transplantation, its prevalence, associated factors, and graft survival.

    Transplantation. 2012; 94: 145-151

    • Mazali F.C.
    • Johnson R.J.
    • Mazzali M.

    Use of uric acid-lowering agents limits experimental cyclosporine nephropathy.

    Nephron Exp Nephrol. 2012; 120: e12-e19

    • Awan A.A.
    • Niu J.
    • Pan J.S.
    • et al.

    Trends in the causes of death among kidney transplant recipients in the United States (1996-2014).

    Am J Nephrol. 2018; 48: 472-481

    • Kasiske B.L.
    • Anjum S.
    • Shah R.
    • et al.

    Hypertension after kidney transplantation.

    Am J Kidney Dis. 2004; 43: 1071-1081

    • Weir M.R.
    • Burgess E.D.
    • Cooper J.E.
    • et al.

    Assessment and management of hypertension in transplant patients.

    J Am Soc Nephrol. 2015; 26: 1248-1260

    • Hoorn E.J.
    • Walsh S.B.
    • McCormick J.A.
    • Zietse R.
    • Unwin R.J.
    • Ellison D.H.

    Pathogenesis of calcineurin inhibitor-induced hypertension.

    J Nephrol. 2012; 25: 269-275

    • Moes A.D.
    • Hesselink D.A.
    • Zietse R.
    • van Schaik R.H.
    • van Gelder T.
    • Hoorn E.J.

    Calcineurin inhibitors and hypertension: a role for pharmacogenetics?.

    Pharmacogenomics. 2014; 15: 1243-1251

    • Robert N.
    • Wong G.W.K.
    • Wright J.M.

    Effect of cyclosporine on blood pressure.

    Cochrane Database Syst Rev. 2010; 1: CD007893https://doi.org/10.1002/14651858.CD007893.pub2

    • Curtis J.J.
    • Luke R.G.
    • Jones P.
    • Diethelm A.G.

    Hypertension in cyclosporine-treated renal transplant recipients is sodium dependent.

    Am J Med. 1988; 85: 134-138

    • Madsen K.
    • Friis U.G.
    • Gooch J.L.
    • et al.

    Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells.

    Kidney Int. 2010; 77: 110-117

    • Hoorn E.J.
    • Walsh S.B.
    • McCormick J.A.
    • et al.

    The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension.

    Nat Med. 2011; 17: 1304-1309

    • Tutakhel O.A.Z.
    • Moes A.D.
    • Valdez-Flores M.A.
    • et al.

    NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity.

    PLoS One. 2017; 12: e0176220

    • Moes A.D.
    • Hesselink D.A.
    • van den Meiracker A.H.
    • Zietse R.
    • Hoorn E.J.

    Chlorthalidone versus amlodipine for hypertension in kidney transplant recipients treated with tacrolimus: a randomized crossover trial.

    Am J Kidney Dis. 2017; 69: 796-804

    • Lazelle R.A.
    • McCully B.H.
    • Terker A.S.
    • et al.

    Renal deletion of 12 kDa FK506-binding protein attenuates tacrolimus-induced hypertension.

    J Am Soc Nephrol. 2016; 27: 1456-1464

    • Melnikov S.
    • Mayan H.
    • Uchida S.
    • Holtzman E.J.
    • Farfel Z.

    Cyclosporine metabolic side effects: association with the WNK4 system.

    Eur J Clin Invest. 2011; 41: 1113-1120

    • Prokai A.
    • Csohany R.
    • Sziksz E.
    • et al.

    Calcineurin-inhibition results in upregulation of local renin and subsequent vascular endothelial growth factor production in renal collecting ducts.

    Transplantation. 2016; 100: 325-333

    • Esteva-Font C.
    • Ars E.
    • Guillen-Gomez E.
    • et al.

    Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2).

    Nephrol Dial Transpl. 2007; 22: 2810-2816

    • Blankenstein K.I.
    • Borschewski A.
    • Labes R.
    • et al.

    Calcineurin inhibitor cyclosporine A activates renal Na-K-Cl cotransporters via local and systemic mechanisms.

    Am J Physiol Ren Physiol. 2017; 312: F489-F501

    • Borschewski A.
    • Himmerkus N.
    • Boldt C.
    • et al.

    Calcineurin and sorting-related receptor with A-type repeats interact to regulate the renal Na(+)-K(+)-2Cl(-) cotransporter.

    J Am Soc Nephrol. 2016; 27: 107-119

    • Badiou S.
    • Cristol J.P.
    • Mourad G.

    Dyslipidemia following kidney transplantation: diagnosis and treatment.

    Curr Diab Rep. 2009; 9: 305-311

    • Akman B.
    • Uyar M.
    • Afsar B.
    • Sezer S.
    • Ozdemir F.N.
    • Haberal M.

    Lipid profile during azathioprine or mycophenolate mofetil combinations with cyclosporine and steroids.

    Transpl Proc. 2007; 39: 135-137

    • Gueguen Y.
    • Ferrari L.
    • Souidi M.
    • et al.

    Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMG-CoA reductase.

    Basic Clin Pharmacol Toxicol. 2007; 100: 392-397

    • Ballantyne C.M.
    • Podet E.J.
    • Patsch W.P.
    • et al.

    Effects of cyclosporine therapy on plasma lipoprotein levels.

    JAMA. 1989; 262: 53-56

  • Cyclosporine, low-density lipoprotein, and cholesterol.

    Mayo Clin Proc. 1988; 63: 1012-1021

    • Tory R.
    • Sachs-Barrable K.
    • Hill J.S.
    • Wasan K.M.

    Cyclosporine A and Rapamycin induce in vitro cholesteryl ester transfer protein activity, and suppress lipoprotein lipase activity in human plasma.

    Int J Pharm. 2008; 358: 219-223

  • Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Work Group. KDIGO Clinical Practice Guideline for Lipid Management in Chronic Kidney Disease.

    Kidney Inter Suppl. 2013; 3: 259-305

    • Riella L.V.
    • Gabardi S.
    • Chandraker A.

    Dyslipidemia and its therapeutic challenges in renal transplantation.

    Am J Transpl. 2012; 12: 1975-1982

  • Smith MEB, Lee NJ, Haney E, et al. Drug Class Review: HMGCoA Reductase Inhibitors (Statins) and Fixed-dose Combination Products Containing a Statin: Final Report Update 5. Portland, OR: Oregon Health & Science University; November 2009. https://www.ncbi.nlm.nih.gov/books/NBK47273/. Accessed September 7, 2019.

    • Webster A.C.
    • Taylor R.R.S.
    • Chapman J.R.
    • Craig J.C.

    Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients.

    Cochrane Database Syst Rev. 2005; 4: CD003961https://doi.org/10.1002/14651858.CD003961.pub2

    • Ghisdal L.
    • Van Laecke S.
    • Abramowicz M.J.
    • Vanholder R.
    • Abramowicz D.

    New-onset diabetes after renal transplantation: risk assessment and management.

    Diabetes Care. 2012; 35: 181-188

    • Van Laecke S.
    • Van Biesen W.
    • Verbeke F.
    • De Bacquer D.
    • Peeters P.
    • Vanholder R.

    Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation.

    Am J Transpl. 2009; 9: 2140-2149

    • Heit J.J.
    • Apelqvist A.A.
    • Gu X.
    • et al.

    Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function.

    Nature. 2006; 443: 345-349

    • Tamura K.
    • Fujimura T.
    • Tsutsumi T.
    • et al.

    Transcriptional inhibition of insulin by FK506 and possible involvement of FK506 binding protein-12 in pancreatic beta-cell.

    Transplantation. 1995; 59: 1606-1613

    • Hecking M.
    • Haidinger M.
    • Doller D.
    • et al.

    Early basal insulin therapy decreases new-onset diabetes after renal transplantation.

    J Am Soc Nephrol. 2012; 23: 739-749

    • Pirsch J.D.
    • Miller J.
    • Deierhoi M.H.
    • Vincenti F.
    • Filo R.S.

    A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group.

    Transplantation. 1997; 63: 977-983

  • Neurotoxicity of calcineurin inhibitors: impact and clinical management.

    Transpl Int. 2000; 13: 313-326

    • Anghel D.
    • Tanasescu R.
    • Campeanu A.
    • Lupescu I.
    • Podda G.
    • Bajenaru O.

    Neurotoxicity of immunosuppressive therapies in organ transplantation.

    Maedica (Buchar). 2013; 8: 170-175

  • Neurotoxicity of immunosuppressive drugs.

    Liver Transpl. 2001; 7: 937-942

    • Hinchey J.
    • Chaves C.
    • Appignani B.
    • et al.

    A reversible posterior leukoencephalopathy syndrome.

    N Engl J Med. 1996; 334: 494-500

    • Lee V.H.
    • Wijdicks E.F.
    • Manno E.M.
    • Rabinstein A.A.

    Clinical spectrum of reversible posterior leukoencephalopathy syndrome.

    Arch Neurol. 2008; 65: 205-210

    • James J.A.
    • Boomer S.
    • Maxwell A.P.
    • et al.

    Reduction in gingival overgrowth associated with conversion from cyclosporin A to tacrolimus.

    J Clin Periodontol. 2000; 27: 144-148

  • Drug-induced gingival overgrowth: the nemesis of gingiva unravelled.

    J Indian Soc Periodontol. 2013; 17: 182-187

    • Gafter-Gvili A.
    • Sredni B.
    • Gal R.
    • Gafter U.
    • Kalechman Y.

    Cyclosporin A-induced hair growth in mice is associated with inhibition of calcineurin-dependent activation of NFAT in follicular keratinocytes.

    Am J Physiol Cell Physiol. 2003; 284: C1593-C1603

  • Partial response of severe alopecia areata to cyclosporine A.

    Dermatology. 1999; 199: 67-69

    • Tricot L.
    • Lebbe C.
    • Pillebout E.
    • Martinez F.
    • Legendre C.
    • Thervet E.

    Tacrolimus-induced alopecia in female kidney-pancreas transplant recipients.

    Transplantation. 2005; 80: 1546-1549

  • Source Link

    Related Posts

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: